Land at West Camel Road, Queen Camel, Somerset

Geophysical Survey (Magnetic)

by Tim Dawson

Site Code: QCS13/155

(ST 5936 2457)
Land at West Camel Road, Queen Camel, Somerset

Geophysical Survey (Magnetic) Report
For Queen Camel Parish Council

by Tim Dawson
Thames Valley Archaeological Services Ltd

Site Code QCS 13/155

September 2013
Summary

Site name: Land at West Camel Road, Queen Camel, Somerset

Grid reference: ST 5936 2457

Site activity: Magnetometer survey

Date and duration of project: 14th-15th August 2013

Project manager: Steve Ford

Site supervisor: Tim Dawson

Site code: QCS 13/155

Area of site: 2.76ha

Summary of results: Several features of archaeological interest were identified by the survey. These include a continuation of the complex of structures, trackways and enclosures that appear to surround the villa to the west as well as anomalies which may represent other phases of occupation.

Location of archive: The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder. All TVAS unpublished fieldwork reports are available on our website: www.tvas.co.uk/reports/reports.asp.

Report edited/checked by: Steve Ford✓ 23.09.13
Introduction

This report documents the results of a geophysical survey (magnetic) carried out at land at West Camel Road, Queen Camel, Somerset (ST 5936 2457) (Fig. 1). The work was commissioned by Ms Rosemary Heath-Coleman on behalf of Queen Camel Parish Council.

Proposals for the expansion of village services including housing, school and recreational facilities together with a structure plan are being considered. Geophysical survey has been requested in order to determine the eastern extents of the Roman villa already located and investigated through previous surveys and excavation (Payne 2008, Buczek and Dawson 2012a, 2012b) and therefore inform the proposed village expansion.

The fieldwork was undertaken by Tim Dawson and Richard Tabor on 14th and 15th August 2013 and the site code is QCS 13/155.

The archive is presently held at Thames Valley Archaeological Services, Reading in accordance with TVAS digital archiving policies.

Location, topography and geology

The site consists of portions of two fields with a total area of 2.76ha located immediately to the west of the village of Queen Camel, c.9km northeast of Yeovil, Somerset (Fig. 1). The northern field is currently a well-maintained playing field with a pavilion on its western side and, at the time of survey, in situ football goalposts while the southern field is rough pasture. Both fields are bordered by thick mature hedgerows except to the east of the playing field where a fence and garden hedges separate it from the neighbouring houses. To the west lies farmland, to the north a continuation of the playing field and to the east and south housing and Queen Camel medical centre (Fig. 2). Topographically, the land rises gently from c.36.4m above Ordnance Datum in the south up to c.37.1m in the north. The underlying geology is described as Langport Member, Blue Lias Formation and Charmouth Mudstone Formation (BGS 1973). The weather conditions during the survey were largely overcast but with heavy rain towards the end of the second day. Despite the precipitation, the ground itself was hard and dry (Plates 1-3).
Site history and archaeological background

Camel Hill which bisects Queen Camel is an area known for both Iron Age and Roman sites. An Iron Age settlement lies to the south west of Camel Hill Farm to the north of the A303. This road is also thought to be the course of the Roman Road from Ilchester to Old Sarum. To the south west of the site are a series of earthworks including at least one house platform, and possibly a second, both adjoining the holloway which are the remains of a deserted medieval village. To the north of the site across the road are the remains of a Roman villa complex that was the subject of a geophysical survey (Payne 2008, fig. 1) after metal detectorists noted a concentration of Roman coins, fragments of building stone and mosaic tesserae at its southern end. Subsequent exploratory excavation (Graham 2009) uncovered part of a well-preserved mosaic pavement c.0.20m below the ground surface. Within one of the rooms is a hypocaust, suggesting the presence of a large heated room at the east end of the building. To the southwest a detached bath house was discovered and was interpreted as indicative of a previously-unknown Roman villa site. The geophysical (magnetic and resistance) surveys mapped the outline of a large aisled hall building set within an extensive system of angular ditched enclosures. Further geophysics (Buczek and Dawson 2012a, fig. 2) and evaluation (Weale 2013) have showed that the villa complex extends further south into the field immediately to the north of the site. To the north of the site on the eastern end of Camel Hill, Anglo-Saxon burials were discovered in a quarry. In the Domesday Book (Williams and Martin 2002) Queen Camel is held by the king where it was assessed at 15 hides of land with 15 ploughs. In the demesne there were 5 hides, 4 ploughs and 6 slaves whilst the rest of the area was farmed by 28 villans and 10 bordars with 11 ploughs. There were also 2 mills, 100 acres, of meadow, 100 acres of pasture, 100 acres of woodland and was worth £23 of blanch silver. This would make Queen Camel a very large and wealthy holding. The site of School Site A itself was subject to a geophysical survey (Buczek and Dawson 2012b, fig. 2) that showed three positive anomalies of possible archaeological origin. Several other anomalies traversing the site are, however, considered to be of agricultural or geological origin with additional anomalies due to electrical/ferrous interference.

Methodology

Sample interval

Data collection required a temporary grid to be established across the survey area using wooden pegs at 20m intervals with further subdivision where necessary. Readings were taken at 0.25m intervals along traverses 1m apart. This provides 1600 sampling points across a full 20m × 20m grid (English Heritage 2008), providing an
appropriate methodology balancing cost and time with resolution. The initial plan consisted of surveying each field in a series of segments, evaluating each batch of results before continuing with the next segment. In practice it proved to be more time-effective to survey each area in a single sweep. The grid layouts were only obstructed by the hedgerows and some undergrowth spreading out from them, particularly along the western edge of the south field. This had the affect of reducing the area available for survey.

The Grad 601-2 has a typical depth of penetration of 0.5m to 1.0m. This would be increased if strongly magnetic objects have been buried in the site. Under normal operating conditions it can be expected to identify buried features >0.5m in diameter. Features which can be detected include disturbed soil, such as the fill of a ditch, structures that have been heated to high temperatures (magnetic thermoremnance) and objects made from ferro-magnetic materials. The strength of the magnetic field is measured in nano Tesla (nT), equivalent to 10^{-9} Tesla, the SI unit of magnetic flux density.

Equipment

The purpose of the survey was to identify geophysical anomalies that may be archaeological in origin in order to inform a targeted archaeological investigation of the site prior to development. The survey and report generally follow the recommendations set out by both English Heritage (2008) and the Institute for Archaeologists (2002).

Magnetometry was chosen as a survey method as it offers the most rapid ground coverage and responds to a wide range of anomalies caused by past human activity. These properties make it ideal for fast yet detailed survey of an area.

The detailed magnetometry survey was carried out using a dual sensor Bartington Instruments Grad 601-2 fluxgate gradiometer. The instrument consists of two fluxgates mounted 1m vertically apart with a second set positioned at 1m horizontal distance. This enables readings to be taken of both the general background magnetic field and any localised anomalies with the difference being plotted as either positive or negative buried features. All sensors are calibrated to cancel out the local magnetic field and react only to anomalies above or below this base line. On this basis, strong magnetic anomalies such as burnt features (kilns and hearths) will give a high response as will buried ferrous objects. More subtle anomalies such as pits and ditches, can be seen from their infilling soils containing higher proportions of humic material, rich in ferrous oxides, compared to the undisturbed subsoil. This will stand out in relation to the background magnetic readings and appear in plan following the course of a linear feature or within a discrete area.
A Trimble GeoXH 6000 handheld GPS system with sub-decimetre accuracy was used to tie the site grid into the Ordnance Survey national grid. This unit offers both real-time correction and post-survey processing; enabling a high level of accuracy to be obtained both in the field and in the final post-processed data.

Data gathered in the field was processed using the TerraSurveyorLite software package. This allows the survey data to be collated and manipulated to enhance the visibility of anomalies, particularly those likely to be of archaeological origin. The table below lists the processes applied to this survey, full survey and data information is recorded in Appendix 1.

<table>
<thead>
<tr>
<th>Process</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip from -5.00 to 5.00 nT</td>
<td>Enhance the contrast of the image to improve the appearance of possible archaeological anomalies.</td>
</tr>
<tr>
<td>De-stripe: median, all sensors</td>
<td>Removes the striping effect caused by differences in sensor calibration, enhancing the visibility of potential archaeological anomalies.</td>
</tr>
<tr>
<td>De-stagger: all grids, both by -1 intervals</td>
<td>Cancels out effects of site’s topography on irregularities in the traverse speed.</td>
</tr>
</tbody>
</table>

Once processed, the results are presented as a greyscale plot shown in relation to the site (Fig. 3), followed by a second plan to present the abstraction and interpretation of the magnetic anomalies (Fig. 4). Anomalies are shown as colour-coded lines, points and polygons. The grid layout and georeferencing information (Fig. 2) is prepared in EasyCAD v.7.22.01, producing a .FC7 file format, and printed as a .PDF for inclusion in the final report.

The greyscale plot of the processed data is exported from TerraSurveyorLite in portable network graphics (.PNG) format, a raster image format chosen for its lossless data compression and support for transparent pixels, enabling it to easily be overlaid onto an existing site plan. The data plot is rotated to orientate it to north and combined with grid and site plans in Adobe InDesign CS5.5, creating .INDD file formats. Once the figures are finalised they are exported in .PDF format for inclusion within the finished report.

Results

North Field (Figs. 5-6)

The magnetic plot for the North Field (Fig. 5) is characterised by a series of parallel positive linear anomalies which run approximately east-west across the field with a spacing of c.10m. These most likely represent a drainage system, either for the playing field or for the allotment gardens which the 1903 Ordnance Survey map (not illustrated) shows as previously occupying the site. Previous maps showing the site provide an explanation
for the set of positive/negative/positive linear anomalies that run from north to south down the centre of the area [Fig. 1: 5] as the field was once divided along this line by an unfenced lane or trackway. These modern features make it hard to identify other anomalies which may be archaeological in origin. One anomaly, a positive linear [1], may represent a ditch although its alignment and position down the exact centre of the western half of the field could indicate that it is contemporary with the allotments and lane. Crossing this at its southern end are a pair of parallel positive anomalies [2], again representing buried cut features such as ditches, which appear to match the alignment of the villa complex to the west (Fig. 10) and may therefore be a continuation of the villa’s enclosure system. In the eastern half of the field are a collection of weaker positive linear anomalies [3, 4] which again appear to be aligned to the villa although whether they are archaeological in origin or more modern it is difficult to ascertain.

Also present within the North Field are six strong ferrous spikes [6], probably caused by ferrometallic objects associated with the site’s current use as a playing fields. A large area of magnetic disturbance in the north-western corner of the survey area is caused by the pavilion while two slightly smaller areas of disturbance, one on the west side of the field and the other on the east are the signatures of the football goals. Further magnetic disturbance is present along the eastern edge of the field as a result of the metal fencing which separate the site from the adjacent gardens.

South Field (Figs. 7-8)

As with the neighbouring fields that have been surveyed previously (Buczek and Dawson 2012a, 2012b), the magnetic plot of the South Field reveals the presence of ridge and furrow farming, the earthworks of which, have now been ploughed out and levelled. These are visible as alternating positive and negative lines, the furrows and ridges respectively, which cross the field in a north-south direction.

The most striking of the anomalies caused by potential archaeological remains are the pair of positive linear anomalies (ditches) [7] which form a 20m-wide elongated enclosure which gently curves round to the northeast and is a continuation of the features noted during previous survey (Fig. 9) (Buczek and Dawson 2012b) and excavation (Weale 2013). This appears to form a focal point within the landscape with the majority of the other anomalies appearing to respect its presence. To the south at its eastern end are a collection of weak positive linear anomalies [8, 9, 10] which form a small rectangular enclosure [9] with a pair of parallel ditches extending eastwards [8] and another cutting across at an angle forming the western side of [9]. To the west of these is another very weak positive linear anomaly with a pit-like anomaly immediately to the north [10] and another
appearing to form a terminus of [9] to the west. In the south-western corner of the survey area are another group of slightly weak positive linear anomalies [11, 12]. Two of these [11] appear to form an entryway or funnel with a ferromagnetic spike at the northern ends of each side while another, probably either earlier or later, linear anomaly [12] crosses the western leg of [11] further to the south.

While the majority of the anomalies recorded in the South Field respect the possible long enclosure [7] that bisects the site, one positive linear cuts straight across it towards its eastern end [13]. This anomaly does not appear to be an extension of others to the north, suggesting that it may be contemporary with the enclosure, although the masking effect of the ridge and furrow’s signature can skew the appearance of underlying features. Slightly to the west is a small positive anomaly in the shape of an arc [14], which may represent an archaeological feature, while a second larger one adjoins the southern enclosure ditch further to the southwest.

To the north of long enclosure [7] are several strong positive linear anomalies on a similar orientation that are most likely further elements of the complex of ditched enclosures that seem to surround the villa site to the west. Two anomalies [15] appear to form a right-angled corner, further west another linear [16] extends northwards, almost in alignment with [13] to the south, with a third [17] another 16m to the west. Between [16] and [17] are a large pit-like positive anomaly and a row of ferromagnetic spikes, both of which may be archaeological in origin. Several other discreet positive anomalies [18], again possibly representing archaeological pits, can be seen to the west of [17] along with a scatter of ferromagnetic debris. To the northwest of these is a large bipolar (positive with matching negative response) magnetic spike [19] the polarity of which appears to be orientated north-south suggesting it may be a thermoremmant feature. These are areas of ground or objects that have been burnt in situ thus realigning their magnetic fields to that of the earth, examples of which may include hearths, furnaces and kilns. Further to the southwest is a group of at least 7 small discreet positive anomalies [20] which may represent postholes in two parallel lines. Two further strong positive linear anomalies can be seen to the west [21] and south [22], both of which are aligned with features located in the previous surveys (Fig. 10).

The area to the south of the western end of the long enclosure contains several positive anomalies which form a wide variety of possible archaeological features. A rectangular anomaly [23] that extends from the southern side of the enclosure may represent the footprint of a structure with adjoining linear features indicating drainage systems. West of this is a set of disjointed positive anomalies which, when taken together, appear to form a rough circle [24] while to the south is a square enclosure [25] formed by ditch-type positive anomalies on its northern, eastern and southern sides. The western side may lie within the overgrown area that prevented
surveying along the field’s western edge or the northern ditch may continue across the modern field boundary joining the one that was identified during surveying in the neighbouring field (Fig. 10).

The South Field contained a few ferromagnetic spikes scattered in the north-western and south-eastern corners of the field with an area of more concentrated magnetic debris in the north-eastern corner. The hedges and fences of the field boundaries along the eastern and south-eastern caused a limited amount of magnetic disturbance in these areas.

Conclusion

The survey has successfully identified several features that are likely to be of archaeological origin particularly in the South Field. Of particular note are the continuation of enclosures identified during the previous surveys and the addition of several other enclosures and possible structures in the western end of the South Field. When studied in conjunction with the surveys and excavations that have been undertaken in the fields to the west the results of this survey provide a detailed plan of the layout of the villa within its surrounding landscape of enclosures and trackways. Some of the anomalies identified, particularly those towards the southern edge of the area may represent previous or subsequent occupation of the site. Other anomalies identified include ridge and furrow farming, drainage for the playing field and anomalies caused by nearby metal objects or services such as buried metal objects or wire fences. All of the above may have had a masking effect on any underlying archaeological features, particularly the drainage in the North Field which appears surprisingly lacking in other anomalies.

References

Buczek, M and Dawson, T, 2012a, ‘School Site A, West Camel Road, Queen Camel, Somerset: Geophysical survey (magnetic) report’, Thames Valley Archaeological Services report 12/152, Reading
Buczek, M and Dawson, T, 2012b, ‘Land at West Camel Road, Queen Camel, Somerset: Geophysical survey (magnetic) report’, Thames Valley Archaeological Services report 12/151, Reading
Weale, A, 2013, Land at West Camel Road, Queen Camel, Somerset, Evaluation, Thames Valley Archaeological Services report WQC12/151b, Reading
Appendix 1. Survey and data information

Programme
Name: TerraSurveyor
Version: 3.0.19.22

NORTH FIELD
Georeferencing (Fig. 2)
N1: E 359367, N 124603
N2: E 359405, N 124617

Raw data
Filename: N field.xcp
Instrument Type: Bartington (Gradiometer)
Units: nT
Surveyed by: Tim Dawson, Richard Tabor on 14/08/2013
Assembled by: Tim Dawson on 14/08/2013
Direction of 1st Traverse: 0 deg
Collection Method: ZigZag
Sensors: 2 @ 1.00 m spacing.
Dummy Value: 32000

Dimensions
Composite Size (readings): 400 x 120
Survey Size (meters): 100 m x 120 m
Grid Size: 20 m x 20 m
X Interval: 0.25 m
Y Interval: 1 m

Stats
Max: 100.00
Min: -100.00
Std Dev: 18.04
Mean: 4.31
Median: 2.60

Composite Area: 1.2 ha
Surveyed Area: 1.1398 ha

Source Grids: 30
1 Col:0 Row:0 grids/01.xgd
2 Col:0 Row:1 grids/02.xgd
3 Col:0 Row:2 grids/03.xgd
4 Col:0 Row:3 grids/04.xgd
5 Col:0 Row:4 grids/05.xgd
6 Col:0 Row:5 grids/06.xgd
7 Col:1 Row:0 grids/07.xgd
8 Col:1 Row:1 grids/08.xgd
9 Col:1 Row:2 grids/09.xgd
10 Col:1 Row:3 grids/10.xgd
11 Col:1 Row:4 grids/11.xgd
12 Col:1 Row:5 grids/12.xgd
13 Col:2 Row:0 grids/13.xgd
14 Col:2 Row:1 grids/14.xgd
15 Col:2 Row:2 grids/15.xgd
16 Col:2 Row:3 grids/16.xgd
17 Col:2 Row:4 grids/17.xgd
18 Col:2 Row:5 grids/18.xgd
19 Col:3 Row:0 grids/19.xgd
20 Col:3 Row:1 grids/20.xgd
21 Col:3 Row:2 grids/21.xgd
22 Col:3 Row:3 grids/22.xgd
23 Col:3 Row:4 grids/23.xgd
24 Col:3 Row:5 grids/24.xgd
25 Col:4 Row:0 grids/25.xgd
26 Col:4 Row:1 grids/26.xgd
27 Col:4 Row:2 grids/27.xgd
28 Col:4 Row:3 grids/28.xgd
29 Col:4 Row:4 grids/29.xgd
30 Col:4 Row:5 grids/30.xgd

Processed data
Stats
Max: 12.00
Min: -12.00
Std Dev: 5.05

Mean: 2.72
Median: 2.59

Processes: 4
1 Base Layer
2 De Stagger: Grids: All Mode: Both By: -1 intervals
3 Clip from -12.00 to 22.00 nT
4 Clip from -12.00 to 12.00 nT

Programme
Name: TerraSurveyor
Version: 3.0.19.22

SOUTH FIELD
Georeferencing (Fig. 2)
S1: E 359382, N 124490
S2: E 359379, N 124509

Raw data
COMPOSITE
Filename: S Field.xcp
Instrument Type: Bartington (Gradiometer)
Units: nT
Surveyed by: Tim Dawson, Richard Tabor on 15/08/2013
Assembled by: Tim Dawson on 15/08/2013
Direction of 1st Traverse: 0 deg
Collection Method: ZigZag
Sensors: 2 @ 1.00 m spacing.
Dummy Value: 32000

Dimensions
Composite Size (readings): 560 x 160
Survey Size (meters): 140 m x 160 m
Grid Size: 20 m x 20 m
X Interval: 0.25 m
Y Interval: 1 m

Stats
Max: 98.75
Min: -100.00
Std Dev: 5.68
Mean: 0.61
Median: 0.72

Composite Area: 2.24 ha
Surveyed Area: 1.3286 ha

Source Grids: 41
1 Col:0 Row:0 grids/01.xgd
2 Col:0 Row:1 grids/02.xgd
3 Col:0 Row:2 grids/03.xgd
4 Col:0 Row:3 grids/04.xgd
5 Col:0 Row:4 grids/05.xgd
6 Col:0 Row:5 grids/06.xgd
7 Col:1 Row:0 grids/07.xgd
8 Col:1 Row:1 grids/08.xgd
9 Col:1 Row:2 grids/09.xgd
10 Col:1 Row:3 grids/10.xgd
11 Col:1 Row:4 grids/11.xgd
12 Col:1 Row:5 grids/12.xgd
13 Col:2 Row:0 grids/13.xgd
14 Col:2 Row:1 grids/14.xgd
15 Col:2 Row:2 grids/15.xgd
16 Col:2 Row:3 grids/16.xgd
17 Col:2 Row:4 grids/17.xgd
18 Col:2 Row:5 grids/18.xgd
19 Col:3 Row:0 grids/19.xgd
20 Col:3 Row:1 grids/20.xgd
21 Col:3 Row:2 grids/21.xgd
22 Col:3 Row:3 grids/22.xgd
23 Col:3 Row:4 grids/23.xgd
24 Col:3 Row:5 grids/24.xgd
25 Col:4 Row:0 grids/25.xgd
26 Col:4 Row:1 grids/26.xgd
27 Col:4 Row:2 grids/27.xgd
28 Col:4 Row:3 grids/28.xgd
29 Col:4 Row:4 grids/29.xgd
30 Col:4 Row:5 grids/30.xgd
31 Col:5 Row:0 grids/31.xgd
32 Col:5 Row:1 grids/32.xgd
33 Col:5 Row:2 grids/33.xgd
34 Col:5 Row:3 grids/34.xgd
35 Col:5 Row:4 grids/35.xgd
36 Col:5 Row:5 grids/36.xgd
37 Col:6 Row:0 grids/37.xgd
38 Col:6 Row:1 grids/38.xgd
39 Col:6 Row:2 grids/39.xgd
40 Col:6 Row:3 grids/40.xgd
41 Col:6 Row:4 grids/41.xgd

8
Processed data

Stats

- Max: 5.00
- Min: -5.00
- Std Dev: 1.82
- Mean: 0.02
- Median: 0.00

Processes:

1. **Base Layer**
2. De Stagger: Grids: All Mode: Both By: -2 intervals
3. DeStripe Median Sensors: All
4. Clip from -12.00 to 12.00 nT
5. Clip from -5.00 to 5.00 nT
Land at West Camel Road, Queen Camel, Somerset, 2013

Geophysical Survey (Magnetic)

Figure 1. Location of site within Queen Camel and Somerset.

Reproduced from Ordnance Survey Explorer 129 at 1:12500
Ordnance Survey Licence 100025880
Figure 2. Grid layout.

Land at West Camel Road, Queen Camel, Somerset, 2013

Geophysical Survey (Magnetic)
Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)
Figure 3. Plot of minimally processed gradiometer data for North and South Fields.
Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)
Figure 4. Interpretation plot of survey data for the North and South Fields.
Figure 5. Plot of minimally processed gradiometer data for the North Field.
Figure 6. Interpretation plot of survey data for the North Field.

Legend
- Positive anomaly - possible cut feature (archaeology)
- Positive anomaly - probably of agricultural origin
- Weak positive anomaly - possible cut feature
- Ferrous spike - probable ferrous object
- Negative anomaly - possible earthwork (archaeology)
- Magnetic disturbance caused by nearby metal objects/services
- Possible thermoremanent feature
- Scattered ferromagnetic debris

Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)

Figure 6. Interpretation plot of survey data for the North Field.
Figure 7. Plot of minimally processed gradiometer data for the South Field.
Figure 8. Interpretation plot of survey data for the South Field.

Legend
- Positive anomaly - possible cut feature (archaeology)
- Positive anomaly - probably of agricultural origin
- Weak positive anomaly - possible cut feature
- Ferrous spike - probable ferrous object
- Negative anomaly - possible earthwork (archaeology)
- Magnetic disturbance caused by nearby metal objects/services
- Possible thermoremanent feature
- Scattered ferromagnetic debris

Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)

Figure 8. Interpretation plot of survey data for the South Field.
Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)

Figure 9. Plot of minimally processed gradiometer data for North and South Fields in relation to survey data from previous investigations.
Land at West Camel Road, Queen Camel, Somerset, 2013

Geophysical Survey (Magnetic)

Figure 10. Interpretation plot of survey data for the villa site.

Legend
- Positive anomaly - possible cut feature (archaeology)
- Weak positive anomaly - possible cut feature
- Negative anomaly - possible earthwork (archaeology)
- Positive anomaly - probably of agricultural origin
- Ferrous spike - probable ferrous object
- Magnetic disturbance caused by nearby metal objects/services
- Positive thermoremanent feature
- Scattered ferromagnetic debris

N Field
S Field
Plate 1. North Field (playing field), looking west towards pavilion.

Plate 2. South Field, looking northeast.

Plate 3. South Field, looking southeast.

Land at West Camel Road, Queen Camel, Somerset, 2013
Geophysical Survey (Magnetic)
Plates 1 - 3.
<table>
<thead>
<tr>
<th>Era</th>
<th>Calendar Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern</td>
<td>AD 1901</td>
</tr>
<tr>
<td>Victorian</td>
<td>AD 1837</td>
</tr>
<tr>
<td>Post Medieval</td>
<td>AD 1500</td>
</tr>
<tr>
<td>Medieval</td>
<td>AD 1066</td>
</tr>
<tr>
<td>Saxon</td>
<td>AD 410</td>
</tr>
<tr>
<td>Roman</td>
<td>AD 43 BC/AD</td>
</tr>
<tr>
<td>Iron Age</td>
<td>750 BC</td>
</tr>
<tr>
<td>Bronze Age: Late</td>
<td>1300 BC</td>
</tr>
<tr>
<td>Bronze Age: Middle</td>
<td>1700 BC</td>
</tr>
<tr>
<td>Bronze Age: Early</td>
<td>2100 BC</td>
</tr>
<tr>
<td>Neolithic: Late</td>
<td>3300 BC</td>
</tr>
<tr>
<td>Neolithic: Early</td>
<td>4300 BC</td>
</tr>
<tr>
<td>Mesolithic: Late</td>
<td>6000 BC</td>
</tr>
<tr>
<td>Mesolithic: Early</td>
<td>10000 BC</td>
</tr>
<tr>
<td>Palaeolithic: Upper</td>
<td>30000 BC</td>
</tr>
<tr>
<td>Palaeolithic: Middle</td>
<td>70000 BC</td>
</tr>
<tr>
<td>Palaeolithic: Lower</td>
<td>2,000,000 BC</td>
</tr>
</tbody>
</table>