Oxoniensia is issued to members of the Oxfordshire Architectural and Historical Society for a subscription price of £12. Copies of some back numbers are available and Oxoniensia is also accessible in digital format. Please refer to the journal website for further information (www.oxoniensia.org).

Intending contributors to Oxoniensia are asked to submit two copies of their work to the editor, Dr Stephen Mileson, St Edmund Hall, Oxford, OX1 4AR (editor@oahs.org.uk) no later than 1 December each year. The editor will be pleased to advise on preliminary drafts. 'Notes for Contributors' are available on the website.
OXFORDSHIRE ARCHITECTURAL AND HISTORICAL SOCIETY

The Society, formed in 1972 by the amalgamation of the Oxford Architectural and Historical Society (founded in 1839) and the Oxfordshire Archaeological Society (founded in 1852), exists to further the study of the archaeology, topography, architecture, and history of Oxford and Oxfordshire. In addition to publishing Oxoniensia, it provides a programme of winter lectures in Oxford and organizes excursions to places of architectural, historical, and archaeological interest. Through its Listed Buildings Committee and associated Victorian Group, the Society makes representations to public bodies, both on its own behalf and for the Council for British Archaeology, to safeguard historical buildings and monuments. The Society also convenes the Oxford City and County Archaeological Forum, which fosters liaison to discuss and advise on issues concerning archaeology and museums, monitor cases and on occasion make representations on matters of concern.

The Society's website can be found at www.oahs.org.uk. In 2010 OAHS launched two new initiatives to promote digital access to studying Oxfordshire's past: past volumes of Oxoniensia are now available online (the last five years only to members) at http://oxoniensia.org and the OAHS online guide to resources and societies for studying Oxfordshire's past is to be found at http://oxfordshirehistory.modhist.ox.ac.uk.

Subscriptions (£12 individual, £17 family membership) should be sent to the Membership Secretary, Tithe Corner, 67 Hill Crescent, Finstock, Chipping Norton, OX7 3BT, who will be pleased to supply further information about the Society.

THE GREENING LAMBORN TRUST

The Greening Lamborn Trust’s objective is to promote public interest in the history, architecture, old photographs and heraldry of Oxford and its neighbourhood by supporting publications and other media that create access to them. It supports scholarly works and smaller publications of local interest. The Trustees make grants, and occasionally loans, to help with publication costs and expenditure on the display to the public of historic artefacts in local museums and industrial heritage sites. Whilst the Trustees cannot support research costs, they can help with the expense of publishing the research when the publication will be available for general purchase. Sometimes the Trustees will meet the cost of including additional illustrations, historic photographs etc. which would otherwise be omitted. Further information can be obtained from clerk.greeninglamborn@hmg-law.co.uk.

OXFORDSHIRE RECORD SOCIETY

The Oxfordshire Record Society publish transcripts, abstracts and lists of the primary sources for the history of Oxfordshire and work to stimulate interest in archives relating to the county. The annual subscription, currently only £12, supports the Society’s work and entitles members to receive each volume published and a free visit to an historical site at each AGM.

Recent volumes issued by the Society include:
Oxfordshire Friendly Societies, 1750-1918, ed. Shaun Morley
The Life and Times of a Charlbury Quaker, ed. Hannah Jones
Applications for membership should be sent to Mr Shaun Morley, Tithe Corner, 67 Hill Crescent, Finstock, Chipping Norton, OX7 3BT (oxfordshirerecordsociety@gmail.com).
New members receive a volume of their choice from those still in print. Further information can be obtained on the Society’s website: www.oxfordshire-record-society.org.uk

OXFORD HISTORICAL SOCIETY

Founded in 1884, the Society publishes editions of historical records relating to the City, University, and Colleges of Oxford. To date over 140 volumes have been issued, of which almost 100 are still in print (available to non-subscribers from Boydell & Brewer Ltd: http://www.boydellandbrewer.com). Works published by the Society include Cordeaux and Merry’s bibliographies of the City of Oxford (1976), Oxfordshire (1950), and a supplementary volume on Oxfordshire (1981). The Society’s latest publication is The Warden’s Punishment Book of All Souls College, Oxford, 1601-1830, ed. Scott Mandelbrote and John H.R. Davis (2013). Enquiries about subscription to the Society’s publications should be addressed to: Dr E.M.P. Wells, 24 Tree Lane, Iffley, Oxford, OX4 4EY (elizabeth.wells@bodleian.ox.ac.uk). Subscribers may purchase previous publications at reduced prices.

OXFORDSHIRE LOCAL HISTORY ASSOCIATION

The Association was founded in 1980 to further the study of local history in the County, and in particular to promote links between amateur local historians and academic and professional bodies involved in local history. The Association organizes twice-yearly study days and publishes a regular newsletter and a journal, Oxfordshire Local History. Further details at: www.olha.org.uk

Enquiries about the Association should be addressed to the Hon. Treasurer and Membership Secretary, Liz Woolley, 138 Marlborough Road, Oxford, OX1 4LS (membership@olha.org.uk).

BANBURY HISTORICAL SOCIETY

The Society publishes volumes of records relating to Banbury and its neighbourhood, including parts of Northamptonshire and Warwickshire as well as Oxfordshire. Thirty volumes have been published to date. These include all pre-General Registration Banbury Parish Registers, 1558—1838, now mostly out of print, but available on microfiche from Oxfordshire Family History Society, c/o Oxfordshire Studies, Central Library, Westgate, Oxford OX1 1DJ.

Recent volumes, available from Banbury Museum, include:
Victorian Squarson: The Diaries of William Cotton Risley, of Deddington, 1, 1835-1848, 2, 1849-1869, ed. G. Smedley-Stevenson
Banbury Past through Artists’ Eyes, S. Townsend and J. Gibson

In preparation:

The Society’s magazine, Cake and Cockhorse, is issued to members three times a year. Those from 1959 to 2003 are available to buy on a CD-ROM or free online at www.banburyhistory.org.

Subscriptions (£13) are payable to the Hon. Secretary, c/o Banbury Museum, Spiceball Park Road, Banbury, OX16 2PQ.
OXONIENSIA

A refereed journal dealing with the archaeology, history and architecture of Oxford and Oxfordshire

VOLUME 79

2014

PUBLISHED AND SOLD BY
THE OXFORDSHIRE ARCHITECTURAL & HISTORICAL SOCIETY
ASHMOLEAN MUSEUM, OXFORD
© Oxfordshire Architectural and Historical Society. All rights reserved.

The Committee of the Oxfordshire Architectural and Historical Society wishes it to be understood that it is not responsible for any statements or opinions expressed in Oxoniensia.

The authors and publisher are grateful to all the institutions and individuals listed for permission to reproduce the materials in which they hold copyright. Every effort has been made to trace the copyright holders; apologies are offered for any omission, and the publisher will be pleased to add any necessary acknowledgement in a subsequent edition.

ISSN 0308–5562
ISBN 9789110004399
Contents

<table>
<thead>
<tr>
<th>Article/Report/Note</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A Multi-Phase Anglo-Saxon Site in Ewelme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEPHEN MILESON and STUART BROOKES</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>The Allestree Library at Christ Church, Oxford, and its Tiled Pavement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAHAM KEEVILL, MAUREEN MELLOR and JUDITH CURTHOYS</td>
<td>31</td>
</tr>
<tr>
<td>47</td>
<td>Wenceslaus Hollar's Maps of Oxford</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOHN W. HAWKINS</td>
<td>47</td>
</tr>
<tr>
<td>61</td>
<td>Problems of Reform in Eighteenth-Century Oxford: The Case of George Wyndham, Warden of Wadham, 1744–77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.S.L. DAVIES</td>
<td>61</td>
</tr>
<tr>
<td>77</td>
<td>The Destruction of the Dyke Hills, Dorchester-on-Thames</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHRISTOPHER M. WELCH</td>
<td>77</td>
</tr>
<tr>
<td>97</td>
<td>St Luke's Church, Canning Crescent, Oxford</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAVID R. CLARK and LIZ WOOLLEY</td>
<td>97</td>
</tr>
<tr>
<td>REPORTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>A Middle Bronze-Age Burnt Mound at Sonning Eye Quarry, Caversham</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUSAN PORTER and ANDREW WEALE</td>
<td>111</td>
</tr>
<tr>
<td>129</td>
<td>Fieldwork at a Prehistoric, Iron-Age and Roman Site at Hurst Hill, Cumnor, Oxford</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROGER AINSLIE</td>
<td>129</td>
</tr>
<tr>
<td>147</td>
<td>A Middle Anglo-Saxon Cemetery and Medieval Occupation at the Church of the Immaculate Conception, Bicester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAMES LEWIS, CERI FALYS and STEVE PRESTON</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>ROBIN BASHFORD, ANNE DODD and DANIEL POORE</td>
<td>173</td>
</tr>
<tr>
<td>211</td>
<td>Eleventh-Century, Later-Medieval and Early Post-Medieval Evidence from Investigations at Jesus College and Market Street, Oxford</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROBIN BASHFORD and BEN M. FORD</td>
<td>211</td>
</tr>
<tr>
<td>NOTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Archaeological Work in Oxford, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAVID RADFORD</td>
<td>235</td>
</tr>
<tr>
<td>239</td>
<td>Archaeological Work in Oxfordshire, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUGH CODDINGTON, RICHARD ORAM and SUSAN LISK</td>
<td>239</td>
</tr>
<tr>
<td>247</td>
<td>The Portable Antiquities Scheme in Oxfordshire, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNI BYARD</td>
<td>247</td>
</tr>
</tbody>
</table>
REVIEWS

Joan Dils and Margaret Yates (eds.), *An Historical Atlas of Berkshire* (2nd edition) 253

ADRIENNE ROSE

Helena Hamerow, *Rural Settlements and Society in Anglo-Saxon England*; Richard Jones and Sarah Semple (eds.), *Sense of Place in Anglo-Saxon England* 254

STEPHEN MILESON

STUART BROOKES

JILL GREENAWAY

Richard Wheeler, *Oxfordshire's Best Churches* 259

JON CANNON

John Steane and James Ayres, *Traditional Buildings in the Oxford Region c.1300–1840* 260

ROB PARKINSON

Lesley Peterson (ed.), *The Mirror of the Worlde: A Translation by Elizabeth Tanfield Cary* 262

RICHARD MCCABE

Barrie Trinder (ed.), *Victorian Banburyshire: Three Memoirs* 263

JOAN DILS

John Carey, *The Unexpected Professor: An Oxford Life in Books* 264

J.M. LEE

Steven Gunn (ed.), *Treasures of Merton College* 265

JOHN STEANE

INDEX 269
THE OXFORDSHIRE ARCHITECTURAL
AND HISTORICAL SOCIETY

OFFICERS AND COMMITTEE 2014

PRESIDENT
C. DAY, M.A., F.S.A.

VICE-PRESIDENTS
T.H. WILSON, M.A., M.PHIL., F.S.A.
J.R.L. HIGHFIELD, M.A., D.PHIL., F.S.A.

COMMITTEE

Honorary Secretary J. HIND
Honorary Treasurer P. COOKSON
Editor S.A. MILESON (St Edmund Hall, Oxford, OX1 4AR)
Membership Secretary S. MORLEY
Lectures Secretary A. ROSEN
Excursions Secretary J.P. HINE
Honorary Auditor J.A. HUDSON
Honorary Librarian J. MUNBY
Honorary Reviews Editor R.B. PEBERDY (38 Randolph Street, Oxford, OX4 1XZ)
Oxford City and County Archaeological Forum G.H. LAMBRICK (Chairman) R. AINSLIE (Hon. Secretary)
Sub-Committee for Listed Buildings D.R. CLARK (Chairman) E. WOOLLEY (Hon. Secretary)
Webmaster T. DODD
Ordinary Member N. DOGGETT
Abbreviations

Abbreviated titles are used in each article after the first full citation. In addition, the following are used throughout the volume or in particular articles:

BAR British Archaeological Reports (Oxford, 1974–)
BAR BS British Archaeological Reports, British Series
BAR IS British Archaeological Reports, International Series
BL British Library, London
Bodl. Bodleian Library, Oxford
CBM ceramic building material
CCA Christ Church Archive, Oxford
CCEd Clergy of the Church of England Database
EPNS English Place-Name Society
EVE estimated vessel equivalent
Fig./Figs. figure/figures
f./ff. folio/folios
FLO Finds Liaison Officer
Hants. RO Hampshire Record Office
HER Historic Environment Record
IFA Institute of Field Archaeologists
JMHS John Moore Heritage Services
MOLA Museum of London Archaeology
MedArch Medieval Archaeology (London, 1958–)
MS manuscript
n. note
n.d. no date
ns new series
OA Oxford Archaeology
OBR Oxfordshire Buildings Record
OD Ordnance Datum
OED Oxford English Dictionary
OHC Oxfordshire History Centre (formerly Oxfordshire Record Office)
OHS Oxford Historical Society
ORS Oxfordshire Record Society
OS Ordnance Survey
os old/original series
OUM Oxford University Museum
OXCMS Oxfordshire County Museums Service
r. recto
RCHM(E) Royal Commission on Historical Monuments (England)
SMidlA South Midlands Archaeology (Oxford, 1983–) [formerly CBA Group 9 Newsletter]
TNA: PRO The National Archives, Public Record Office, Kew
TS typescript
TVAS Thames Valley Archaeological Services
v. verso
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>Vernacular Architecture (York, 1970–)</td>
</tr>
<tr>
<td>VCH</td>
<td>Victoria History of the Counties of England (London, 1900–) [Victoria County History]</td>
</tr>
<tr>
<td>vol.</td>
<td>volume</td>
</tr>
<tr>
<td>WCA</td>
<td>Wadham College Archives</td>
</tr>
</tbody>
</table>
Contributors

ROGER AINSLIE, Abingdon Archaeological Geophysics
ROBIN BASHFORD, Oxford Archaeology
STUART BROOKES, Honorary Senior Lecturer, UCL Institute of Archaeology
ANNI BYARD, Portable Antiquities Scheme
DAVID R. CLARK, Secretary of the Oxfordshire Buildings Record
HUGH CODDINGTON, Oxfordshire County Council
JUDITH CURTHOYS, Archivist, Christ Church
C.S.L. DAVIES, Emeritus Fellow and Keeper of the Archives, Wadham College
ANNE DODD, Oxford Archaeology
CERI FALYS, TVAS
BEN M. FORD, Oxford Archaeology
JOHN W. HAWKINS, St Edmund Hall
GRAHAM KEEVILL, Keevell Heritage Consultancy
JAMES LEWIS, TVAS
SUSAN LISK, Oxfordshire County Council
MAUREEN MELLOR, Part-Time Tutor, Oxford University Department for Continuing Education
STEPHEN MILESON, Research Fellow, Oxford University History Faculty
RICHARD ORAM, Oxfordshire County Council
DANIEL POORE, Oxford Archaeology
SUSAN PORTER, TVAS
STEVE PRESTON, TVAS
DAVID RADFORD, Oxford City Council
ANDREW WEALE, TVAS
CHRISTOPHER M. WELCH, Inspector of Ancient Monuments
LIZ WOOLLEY, Part-Time Tutor, Oxford University Department for Continuing Education
A Middle Bronze-Age Burnt Mound at Sonning Eye Quarry, Caversham

SUSAN PORTER and ANDREW WEALE

with contributions by STEVE FORD, MALCOLM LYNE, ROSALIND MCKENNA, DANIELLE MILBANK, SUSAN PORTER and KAREN WICKS

SUMMARY

Excavation at Sonning Eye Quarry revealed a burnt mound, which two radiocarbon dates of 1621–1498 and 1416–1266 cal BC showed to be of middle Bronze-Age date. As so often with such sites, few closely datable features or artefacts accompanied the mound. A pollen sequence and lithostratigraphic analysis of a column sample from a palaeochannel record a slow process of environmental change and suggest that the area was frequently flooded (as it still is), and may have been a marsh, or when dry, grazing land. Other evidence was very sparse.

INTRODUCTION

An archaeological recording action was carried out by TVAS at Sonning Eye Quarry, Playhatch Road, Caversham, Oxfordshire (NGR SU 7460 7640; Fig. 1) in advance of mineral extraction. The majority of the site occupied low-lying ground subject to flooding, and extensive tracts of alluvium were present, along with a large, deep peat- and alluvium-filled river palaeochannel.

Location, Topography and Geology

The site (Fig. 2) is on the north bank of the River Thames, opposite Sonning village. This location is on the floodplain at a height of 36 metres OD. The ground rises up slightly to the west. The underlying geology is mapped as alluvium with a thin band of loam to the east. The geology observed was predominantly alluvium, to a depth of 4 metres in the palaeochannel towards the north of the area and 3.5 metres at the southern edge, with peat deposits also to the north and west, suggesting that much of the site lay within a Holocene river channel. Palynological assessment shows transition phases in the alluvium suggesting that the freshwater conditions in the channel underwent various changes leading to the deposition of progressively more terrestrial sediments. This analysis suggests that the area once formed part of a river bed, or prehistoric marshland with small islands of higher ground that would have been seasonally dry.

Archaeological Background

Several notable prehistoric sites are located in the vicinity of Sonning. On the south side of the river there is a Neolithic ceremonial complex comprising a cursus, mortuary enclosure and possibly oval barrows. Recent geophysical survey has extended knowledge of the cursus,

establishing its west end and thus its full dimensions (205 metres long, 35 metres wide), and added evidence for a previously unsuspected rectilinear enclosure and other features. Several levelled round barrows (ring ditches) of Bronze-Age date are also present nearby, as is a Roman enclosure. Adjoining the Sonning Eye Quarry site to the south-east is another ring ditch cemetery. To the east is a possible Neolithic causewayed enclosure. Extensive excavation at Thames Valley Park to the south-west revealed a Beaker burial and an Iron-Age enclosure.

4 Gates, The Thames Valley.
5 This had been discounted but has latterly been re-assessed: A. Oswald et al., The Creation of Monuments: Neolithic Causewayed Enclosures in the British Isles (2001), p. 154.
In 2004, evaluation of the Sonning Eye site recorded deposits of undated flint nodules, human remains and timbers preserved by waterlogging, and a few stray finds of prehistoric pottery and struck flint. The area where human remains were recorded was not within the eventual extraction area and so was not re-examined.

DISCUSSION

Excavation in advance of mineral extraction at Sonning Eye Quarry led to the discovery of a burnt mound, which two radiocarbon dates placed in the middle Bronze Age. Besides the burnt mound, few features were present on the site and those for the most part undated. Artefacts were also scarce: only twenty-one sherds of pottery were recovered, mostly unstratified, although the Bronze Age, Iron Age and Roman period were all represented. The few flint finds range in date from the Mesolithic to the Bronze Age. Other finds include a fragment of shale bracelet probably dating from the later Iron Age or the Roman period.

A pollen sequence and lithostratigraphic analysis of a column sample from a palaeochannel in Area A recorded a slow process of environmental change and suggest that the area was frequently flooded, and may have been marsh, or in drier periods grazing land.

The main feature of interest was the burnt mound, a feature that is infrequently recorded in the archaeological literature for southern England (though increasingly so in recent years),

and more common in the highland zones of Britain and Ireland.\(^8\) From Oxfordshire the only previously recorded examples seem to be at Yarnton.\(^9\) Typically located close to water, burnt mounds generally comprise a crescentic mound of burnt stone surrounding a trough.\(^10\) They are predominantly a Bronze-Age phenomenon but Neolithic and Iron-Age examples are recorded. Some Irish examples have very extended chronologies from the Neolithic through to the late Bronze Age, as at Cahirlalla Beg.\(^11\) The interpretation of burnt mounds is that their primary purpose was for the heating of water but it is not known what this water was used for. The general opinion is that it was used for cooking though other theories include bathing, brewing and dyeing.\(^12\) The similarity of southern English examples with their more numerous and well-studied counterparts in Ireland and the highland zones of Britain is frequently only general. Some defining features of the upland mounds are absent from mounds in this region. Although described as 'mounds', many lowland mounds survive only as spreads of burnt stone, levelled by later ploughing, so that some are more like in-filled hollows than mounds, at least as they survive today.

The Sonning site does not conform to the 'model' type of burnt mound, neither being crescentic nor surrounding a trough (though it is possible that a trough may exist in the unexcavated area). However, its characteristics are broadly similar to others in the middle Thames region, several of which have been radiocarbon dated. A large levelled mound at Green Park, Reading (Fig. 1) was dated by association with late Bronze-Age pottery and sealed a pit with a radiocarbon date of 1220–860 cal BC.\(^13\) Further west, in the Kennet valley, are three more sites. At Anslow's Cottages a small mound was associated with a late Bronze-Age date of 840–410 cal BC.\(^14\) Another small mound at Turnpike School, Newbury produced a late Bronze-Age radiocarbon date of 996–807 cal BC,\(^15\) while the mound at Dunston Park, Thatcham produced a date of 1380–900 cal BC.\(^16\)

To the south-east of the Sonning site, the mound at Barkham Square, Wokingham has two radiocarbon determinations of 1375–895 and 820–510 cal BC, indicating a lengthy use,\(^17\) as seen here, and Jennetts Park, Bracknell produced dates of 1630–1450 and 1420–1260 cal BC.\(^18\) At Little Marlow in the Thames valley to the east, three burnt mounds (one with a trough) and five burnt flint patches were excavated.\(^19\) Radiocarbon dating of these three sites produced dates of 2475–2140, 2140–1920 and 1745–1385 cal BC, again indicating a very long span of use from the late Neolithic through to the middle Bronze Age.

\(^11\) N. Bermingham et al., *Beneath the Banner, Archaeology of the M18 Ennis Bypass and N85 Western Relief Road, County Clare* (2012), pp. 31–5.
\(^13\) A. Brossler et al., *Green Park (Reading Business Park), Phase 2 Excavations 1995 – Neolithic and Bronze Age Sites* (2004), p. 39 and appendix 1.
Another feature related to burnt mounds commonly encountered in Ireland is the burnt spread: a small patch of burnt flint without any other features.20 There is a single example at Sonning (spread 205) and five at Little Marlow.21

The dating of the Sonning Eye burnt mound to the middle Bronze Age (it seals a pit of 1621–1498 cal BC and its lower layer produced a date of 1416–1266 cal BC) adds another component to the settlement record for this period, when occupation sites are infrequently recorded.

EXCAVATION RESULTS

Staging of the work divided the site into three areas (Fig. 2: A, B, C). Area C contained nothing of interest. Due to the practicalities of removal of the waterlogged alluvial levels, the areas were excavated in strips and therefore not all open at once. The very thin topsoil was removed mechanically to reveal the surface of the alluvium, which was the level at which archaeological features were observed in Area A. Certain and possible archaeological deposits were then hand cleaned and excavated. A small number of unstratified finds was also recorded (Fig. 2). Bulk soil samples were taken to recover organic remains. Once the features at this level had been dealt with, the machine was brought back across the alluvium which was removed with a toothed bucket. This excavation was observed at all times, but no archaeological feature was recorded within or beneath the alluvial deposits in Areas A or C. In Area B, however, all the significant features were below the top layer of alluvial clay, and in places also below a peaty layer.

AREA A

The Palaeochannel

A palaeochannel (1) aligned north-west to south-east was revealed at the eastern part of the site, the base of which was around 33.0 m OD. It was at least 50 m wide, rising gently to the west onto a sand ridge or island approximately 140 m wide at around 34.0 m OD in the centre and dropping to 33.5 m OD further to the west (Fig. 2). The channel cut though the natural gravel and was filled with a series of layers. A typical sequence comprised a brown silty clay (51) up to 0.27 m thick, above a grey blue clay (52) up to 0.58 m thick; beneath this was a brown organic-rich (peaty) silty clay (53) up to 0.40 m thick; this overlay a black organic-rich (peaty) silty clay (54) up to 0.44 m thick and finally beneath this was the natural gravel (55). The thickness of these strata varied reflecting the depth of the palaeochannel.

No features were cut into any of the alluvial layers, nor were artefacts observed within them. A column sample was taken though the palaeochannel in the south-east corner of Area A (Fig. 2; Table 5).

On the slightly higher ground to the west were a gully, three pits, three post holes and numerous tree holes, of which 59 were partially examined. None of these contained dateable artefacts (a few tree-throws contained the odd piece of burnt flint, and scraps of unidentified animal bone) and they are not discussed further.

AREA B

In the north of this area, the alluvium reached a depth of 4 m and comprised several phases of accumulation. At the southern end the alluvium was consistently 3 m deep and again

20 Bermingham et al., \textit{Beneath the Banner}, p. 35.

21 Richmond et al., ‘Excavations at Little Marlow’.
comprised several deposits. In areas where the underlying gravel was approximately 2 m higher, only modern features were observed, uniformly visible upon removal of the topsoil and cutting the uppermost layer of alluvium. An undated wooden stake and part of a branch were recovered from waterlogged contexts (no useful information derived from these and they need not be very old) and there were also surface scatters of artefacts at this level (Fig. 2). Once the top level of alluvium was stripped away, however, Area B did reveal archaeological features.

The Burnt Mound (Figs. 3–7)
On the west side of the site was a dense spread of fire-cracked flint considered to be the remains of a burnt mound. It was buried by a thin silty clay topsoil and a dark grey silty clay alluvium up to 0.1 m thick (Fig. 5) and at the north end it was also below a layer of peat. Its full extent was not uncovered as it was located partly within an ecological stand-off zone which would not be extracted. The mound comprised a very slight domed area no more than 0.16 m high, 22 m long and at least 11 m wide as exposed. Auguring outside the area of excavation at 1 m intervals for a distance of 5 m suggests that the mound continues at least that far to the west.

The mound was divided into eight segments of roughly 4 m width to produce one long (north–south) section, three full cross-sections (west–east) and one partial (Fig. 4). Five of these slots (A–E) were dug by hand and the remaining three (F, G and H) were machine excavated. There was no evidence for a trough.

The mound was broadly composed of burnt stone and charcoal in a dark orange/brown silty clay matrix. In places these were separated by silty clay deposits without burnt flint, to suggest significant breaks in the formation of the mound (either the formation of soil or alluvium differentiating these layers), so the layers presumably reflect episodic use of the site and mound formation (Fig. 5), presumably over a long period. The mound sat atop another alluvial silt layer, in places sealing features below.
Pre-Mound Features
Towards the centre of the area excavated was an oval patch of burning (284) with fragments of burnt flint which was up 2 m across but only 0.02 m deep (Fig. 6). This hearth lay beneath layer 280, the base of the mound. It is possible that it may be one of the first areas used for heating and burning the flint.

To the south-west was pit 218 (Fig. 7). This pit was 0.6 m across and 0.16 m deep with three fills (or more likely, a single fill and two deposits of mound material over the top which have slumped into it). The lower fill (273) was a dark brown-grey silty clay with burnt flint similar in composition to the main mound material. It was overlain by a brown silty clay (274) with little burnt flint which partially filled the feature and extended slightly beyond it. The feature was still partially open until the upper portion finally infilled with main mound material (275). No artefacts were recovered from the pit. However, two radiocarbon dates
were obtained on charcoal from within it: a result of 1621–1498 cal BC (KIA46452) from layer 273 and cal BC 1416–1266 from layer 274, indicating the beginning of the accumulation of mound material.

Pit 219 in slot C was 0.47 m in diameter, 0.11 m deep, with a bowl-shaped profile containing a dark grey-black clay fill (279) and burnt clay. No dating evidence was recovered except that it was below burnt mound layer 280 and cut into alluvial silt 278.

The Mound (Figs. 3 and 5)
The burnt mound comprised at least three layers of burnt flint. The earliest layers (280, 274, 276, and probably 294) were located in segments A, B, C, D and perhaps G, comprising loose dark grey clay with frequent burnt flint inclusions. This first deposit was capped in slot C by a thin layer of firm mottled mid grey-yellow clay (281) and in slot D by dark grey-brown silty clay (287), possibly flood deposits. A sherd of flint-tempered pottery and four struck
Fig. 6. Sections across mound and through pit 218.

Fig. 7. Pit 218, looking west; horizontal scale 1 metre, vertical 0.5 metre.
flints were recovered from layer 287. Two sherds of flint-tempered pottery and two struck flints came from layer 281. A radiocarbon date was obtained on charcoal from layer 274 of 1416–1266 cal BC (KIA46453). Above 281 was another layer of burnt flint (282), again comprising a firm, dark grey-brown silty clay with regular inclusions of 5–40 mm angular burnt flint. Above this layer came another alluvial clay deposit, of yellow-grey silty clay (286, 288).

The final layer of the mound (275 = 277 = 283 = 289 = 294 = 296), was a homogeneous deposit of loose, dark brown-grey silty clay with frequent 5–40 mm angular burnt flint, across the whole mound. A single sherd of Bronze-Age/Iron-Age pottery was recovered from layer 277 with a flint flake and a possible knife from layer 283, and a narrow flake and two fragments of mammal bone from layer 285. Segments F, G and H have only this single layer whereas segments A and B have two burnt flint layers, and it is not clear if the lower one is the first or second layer, but the upper one is homogeneous across the entire mound. Segment E had two burnt flint layers and two clay deposits, and only segments C and D had all three flint layers. In effect it is possible that early phases consisted of smaller discrete spreads and only the top layer is a single ‘mound’.

The radiocarbon dates from two successive stratigraphic episodes have provided an indication of the time over which this monument might have formed. The pit below the mound (218), which was still partially open to receive early mound material, dating to 1621–1498 cal BC, is significantly earlier than layer 274 (1416–1266 cal BC), suggesting that at least 80 years separate two of the formation episodes and this gap could perhaps be in excess of 300 years. However, in order to obtain any absolute (radiocarbon) dates, it is often necessary, as here, to use undifferentiated wood charcoal with uncertainty as to the age of the wood prior to its combustion. There need not, therefore, be any great separation in time between the two episodes. Nevertheless, the monument is firmly of middle Bronze-Age date. The single late Bronze-Age pottery sherd from the top layer could suggest this third phase extends the chronology but it could just as easily have been pressed into the mound from above after it had gone out of use. Three flint-tempered sherds from middle layers (281, 287) identified as possibly middle Iron Age (Lyne, below) potentially represent problems (extending the use of the mound this long is not impossible, but very improbable), but the simplest solution is that they are in fact Bronze Age.

Burnt Flint Patch 205
A patch of burnt flint (205) lay 24 m to the east of the burnt mound (Fig. 2). It was 2.30 m in diameter, but only 0.05 m in depth. It contained a single fill of dark brown/grey silty clay with very frequent burnt flint inclusions (258). A 40 litre sample contained wood charcoal but no dating evidence was recovered.

POST-MOUND FEATURES
Posthole 220 was 0.25 m in diameter, 0.22 m deep with a dark brown/grey silty clay fill (290). No dating evidence was recovered except that it cut mound layer 288. Ditch 122 was aligned north–south but was discontinuous. It was 1.05–0.5 m wide and 0.7–0.2 m in depth, with a flat base. It yielded no finds and cannot be dated but it cut through the alluvium that sealed the mound. Gully 221 at the northern end of the mound was modern.

POTTERY by MALCOLM LYNE
The twenty-one sherds (293 g) of pottery from the site have a wide date range, from late Bronze-Age to Roman (Table 1), but were largely unstratified. The earliest piece is an abraded late Bronze-Age fragment from the burnt mound top layer (277). Layers 281 and 287 produced
two and one fresh sherds respectively that are possibly of Iron-Age date. The late Iron Age is represented by seven unstratified sherds (Fig. 2), comprising a large fresh fragment from a necked-jar in 'Belgic' grog-tempered ware (25 BC–AD 43), five sherds in crumbly underfired sandy fabric fired black (c.AD 1–43) and one in a calcined-flint and quartz-sand tempered Silchester ware variant (c.AD 30–60). Roman pottery comprises ten unstratified fragments all from a greyware girth-cordoned jar of c.AD 150–250 date, probably from the Colne valley kilns near Gerrards Cross.

Fabrics

Late Bronze Age. LBA1. Handmade lumpy oxidized fabric with profuse ill-sorted 0.30 to 3.00 mm calcined-flint filler protruding through the walls of the vessel.

Middle Iron Age. MIA1. Handmade black fabric with profuse 0.30 to 1.00 mm calcined-flint filler.

Late Iron Age. LIA1. Handmade dirty buff grey fabric fired polished black externally with profuse grog filler and occasional <2.00 mm calcined-flint inclusions.

LIA2. Handmade lumpy black with profuse ill-sorted <3.00 mm protruding calcined-flint and <0.10 mm quartz sand filler.

LIA3. Handmade underfired black fabric with profuse <0.50 mm multi-coloured quartz sand filler and angular <1.00 mm calcined-flint.

Roman. R1. Very fine wheel-turned grey fabric fired smooth grey-black with profuse <0.10 mm quartz-sand, a few much larger grains of the same material and occasional grog filler. A Colne valley kilns product.

STRUCK FLINT by STEVE FORD

The ten struck flints recovered are listed in Table 2. The pieces appear to have been made from the local gravel flint, and are in good condition but some are slightly iron stained. The blade is likely to be of Mesolithic date, whereas the other pieces are less chronologically distinctive and could range from Mesolithic to Bronze Age. The pieces associated with the burnt mound could be contemporary with the formation of the structure. The single piece
with shallow retouch along one edge is possibly a knife with a natural cortical back forming the other edge.

SHALE BRACELET by SUSAN PORTER

This unstratified piece (Fig. 2) is a small hoop of polished shale, with an internal diameter of 25 mm and an overall diameter of 45 mm. This size suggests a practical purpose rather than a piece of jewellery and so perhaps it may have functioned as a spindle whorl or belt fastener. The smooth surface suggests that it may have been made on a lathe which in turn suggests a date from the late Iron Age onwards.

FIRED CLAY by DANIELLE MILBANK

Fired clay fragments with a total weight of 202 g were recovered from six layers, all but one associated with the burnt mound. The majority of the fragments were very small, but consistent in terms of fabric, which was an evenly fired mid to dark red fired clay with occasional small (<1 mm) rounded quartz sand inclusions. There are no visible straw marks or other moulded characteristics. The exception is a piece from pit 219 (deposit 272) which was softer, paler (orange), with more frequent inclusions. None of the fragments can be identified to form.

RADIOCARBON DATING

Two samples of charcoal from pit 218 beneath the burnt mound were submitted to the University of Kiel for radiocarbon dating. Details of methodology are in the archive; in summary the results are considered reliable. Calibrated dates were calculated using CALIB rev 5.01. The results are given in Table 3 and are quoted at 2-sigma range. They indicate that pit 218 was filling in the sixteenth century cal BC and layer 273 formed across its top probably around a century later.

COLUMN SAMPLE FROM PALAEOCHANNEL BY KAREN WICKS

Palynological and lithostratigraphic assessment was undertaken on a sedimentary sequence (Column 1) formed within the palaeochannel in Area A (Fig. 2). Details of methodologies are in the site archive. The pollen assessment complements a detailed long vegetation history from the late Devensian period to the present day reconstructed from pollen evidence preserved in

Table 2. Catalogue of struck flint

<table>
<thead>
<tr>
<th>Location</th>
<th>Catalogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find spot 7</td>
<td>Broken flake</td>
</tr>
<tr>
<td>281</td>
<td>Intact flake; broken flake</td>
</tr>
<tr>
<td>283</td>
<td>Intact flake; knife?</td>
</tr>
<tr>
<td>285</td>
<td>Intact narrow flake</td>
</tr>
<tr>
<td>287</td>
<td>2 Intact flakes, 2 broken flakes</td>
</tr>
</tbody>
</table>

Lithostratigraphy (Table 4)24
The column contained 1.79 m of stratified sediments. At the base of the column from 1.79–1.73 m sub-rounded flint pebbles and gravels representing drift geology were overlain by black, organic-rich silty clay with sub-rounded flint granules and pebbles from 1.73–0.89 m. Well-preserved ligneous stems, charcoal and fragments of shell inclusions constitute <5%. The organic-rich silty clay is likely to represent a shift in freshwater environmental conditions within the channel leading to the deposition of progressively more terrestrial sediments. Several alternative processes operating at both a local and regional scale may account for the change in local depositional regime. Local processes such as a lateral shift in the course of the channel away from the site and/or rapid sedimentation to above the level of periodic inundation may be implicated, while regional processes such as a fall in relative sea level or a regressive stage in the rate of relative sea-level rise are possible causes for environmental change.

A very gradual transition to very dark grey clays and silts from 0.89–0.31 m marks a change to deposition of fine-grained particles, which are likely to have formed at the margins of slow moving waters in the channel. A very gradual transition (>20mm) at 0.31 m marks a change in colour and texture to dark yellowish brown silty clay with shelly fragments (c.2%) perhaps deposited in slightly more energetic waters indicating a continuity in fluvial environmental conditions. A change in lithology is marked by a sharp transition at 0.04 m to silty sand perhaps indicative of an upsurge in alluvial sedimentation in increasingly agitated waters. Local environmental processes driving these changes perhaps include the lateral migration of the river channel towards the site. Regional-scale processes such as a rise in relative sea level or a transgressive stage in the rate of relative sea-level rise may have resulted in the deposition of coarser particles in deeper, more energetic waters.

Table 3. Radiocarbon dates (2-sigma range)

<table>
<thead>
<tr>
<th>KIA46452</th>
<th>Pit 218 (fill or layer 273)</th>
<th>Corrected pMC</th>
<th>$\delta^{13}C(%o)$</th>
<th>calibrated age</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal, alkali residue, 1.8 mg C</td>
<td></td>
<td>66.47 ± 0.21</td>
<td>−24.25 ± 0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiocarbon Age</td>
<td>BP3281 ± 26</td>
<td></td>
<td></td>
<td>cal BC 1621–1498</td>
<td>95.4%</td>
</tr>
<tr>
<td>KIA46453</td>
<td>Burnt mound layer 274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charcoal, alkali residue, 1.1 mg C</td>
<td></td>
<td>68.20 ± 0.27</td>
<td>−24.87 ± 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiocarbon Age</td>
<td>BP3075 ± 32</td>
<td></td>
<td></td>
<td>cal BC 1416–1266</td>
<td>95.4%</td>
</tr>
</tbody>
</table>

Two samples of organic-rich silty clay taken at 1.57 m and 1.00 m depths were assessed for pollen, along with one sample of alluvium at 0.12 m (Table 5). Pollen concentrations were low. Predominantly open conditions are indicated by the frequencies of herbaceous taxa throughout the sequence. The presence of pollen from plants favouring disturbed ground such as plantains, docks and members of the daisy family indicates cultivated fields surrounding the site or perhaps unstable floodplain habitats created by intermittent fluvial action. Frequencies of arboreal taxa are low perhaps indicating a regional pollen rain component or that woodland was located some distance from the channel possibly colonizing the floodplain edge. Principal woodland taxa around the site include pine, oak and elm, with hazel and birch perhaps forming more open scrub woodland at the periphery. Ferns may have formed a significant component of woodland understorey, while alder trees may have formed a component of woodland on the valley floor in wetter areas. Increasing fluvial influence is indicated by the occurrence of members of the goosefoot family in the alluvium.

Palynological Assessment

Two samples of organic-rich silty clay taken at 1.57 m and 1.00 m depths were assessed for pollen, along with one sample of alluvium at 0.12 m (Table 5). Pollen concentrations were low. Predominantly open conditions are indicated by the frequencies of herbaceous taxa throughout the sequence. The presence of pollen from plants favouring disturbed ground such as plantains, docks and members of the daisy family indicates cultivated fields surrounding the site or perhaps unstable floodplain habitats created by intermittent fluvial action. Frequencies of arboreal taxa are low perhaps indicating a regional pollen rain component or that woodland was located some distance from the channel possibly colonizing the floodplain edge. Principal woodland taxa around the site include pine, oak and elm, with hazel and birch perhaps forming more open scrub woodland at the periphery. Ferns may have formed a significant component of woodland understorey, while alder trees may have formed a component of woodland on the valley floor in wetter areas. Increasing fluvial influence is indicated by the occurrence of members of the goosefoot family in the alluvium.

CHARRED PLANT REMAINS BY ROSALIND MCKENNA

Bulk soil samples were taken from twenty contexts. The only seed identified was an indeterminate cereal grain. Charcoal fragments were present in low quantities, and were mainly unidentifiable. Twelve samples produced identifiable charcoal (Table 6) and even in
Table 5. Pollen assessment

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Sedimentary unit</th>
<th>Pollen taxa: scientific name</th>
<th>Pollen taxa: common name</th>
<th>No. grains</th>
<th>Preservation</th>
<th>Microcharcoal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57–1.54</td>
<td>Organic-rich silty clay</td>
<td>Betula</td>
<td>Birch</td>
<td>2</td>
<td>Poor/moderate</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alnus</td>
<td>Alder</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corylus avellana-type</td>
<td>Hazel</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poaceae</td>
<td>Grasses</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polypodium</td>
<td>Polypody</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum</td>
<td>Moss</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lycopodium clavatum</td>
<td>Club Moss</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'spike'</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00–3.99</td>
<td>Organic-rich silty clay</td>
<td>Betula</td>
<td>Birch</td>
<td>1</td>
<td>Moderate</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pinus</td>
<td>Pine</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alnus</td>
<td>Alder</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quercus</td>
<td>Oak</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ulmus</td>
<td>Elm</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corylus avellana-type</td>
<td>Hazel</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poaceae</td>
<td>Grasses</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lactuceae</td>
<td>Dandelions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asteraceae</td>
<td>Daisies</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plantago lanceolata</td>
<td>Plantain</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rumex</td>
<td>Dock</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosaceae</td>
<td>Roses</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pteropsida (monolete undiff.)</td>
<td>Ferns</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polypodium</td>
<td>Polypody</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pteridium</td>
<td>Bracken</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lycopodium clavatum</td>
<td>Club Moss</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'spike'</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degraded</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12–0.11</td>
<td>Alluvium</td>
<td>Pinus</td>
<td>Pine</td>
<td>5</td>
<td>Poor</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corylus avellana-type</td>
<td>Hazel</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poaceae</td>
<td>Grasses</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyperaceae</td>
<td>Cyperaceae</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chenopodiaceae</td>
<td>Goosefoots</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lactuceae</td>
<td>Dandelions</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urtica dioica</td>
<td>Common</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pteropsida (monolete undiff.)</td>
<td>Nettle</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pteridium</td>
<td>Ferns</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lycopodium clavatum</td>
<td>Bracken</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Club Moss</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'spike'</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degraded</td>
<td>69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Charcoal

Numbers are identified charcoal fragment for each sample or % where more than 100 present

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cut</th>
<th>Deposit</th>
<th>Feature type</th>
<th>No fragments</th>
<th>Max size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>218</td>
<td>219</td>
<td>258</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Burnt mound</td>
<td>Pit</td>
<td>Burnt mound</td>
<td>Burnt mound</td>
<td>Burnt mound</td>
</tr>
<tr>
<td>No fragments</td>
<td>100+</td>
<td>50+</td>
<td>78</td>
<td>36</td>
<td>50+</td>
</tr>
<tr>
<td>Max size (mm)</td>
<td>21</td>
<td>14</td>
<td>31</td>
<td>22</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Vernacular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corylus avellana</td>
<td>Hazel</td>
</tr>
<tr>
<td>Salix / Populus</td>
<td>Willow / Poplar</td>
</tr>
<tr>
<td>Quercus</td>
<td>Oak</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>57 23 31 25 35 21 17 35 8 48 66 12</td>
</tr>
</tbody>
</table>
these, unidentified charcoal dominates. Willow/poplar is the most numerous of the identified charcoal in eleven samples, with oak in six samples and hazel in just two. Willow and poplar burn quickly at relatively high temperatures, making them good to use as kindling. Hazel is a good fuel wood and widely available within oak woodlands, particularly on the fringes of cleared areas. Oak would have made a fire suitable for most purposes, as well as being a commonly used structural wood that may have had subsequent use as fuel.

ACKNOWLEDGEMENTS

The work was commissioned by Dr Andrew Richmond of Phoenix Consulting Archaeology Limited and funded by Lafarge Aggregates. The excavation was required as a condition of consent for extraction of sand and gravel granted by Oxfordshire County Council, in accordance with PPG16 and the county’s minerals and waste policy. The investigation followed a specification approved by Hugh Coddington of Oxfordshire County Archaeological Services. The various phases of fieldwork, between 1st June 2009 and 13th January 2012, were supervised by Andrew Weale, Susan Porter and Tim Dawson, assisted by Aiji Castle, Aidan Colyer, Chris Crabb, Steve Crabb, James Earley, Henrietta Longden, James McNicoll-Norbury, Jackie Pitt and David Platt. The archive will be deposited with OXCMS under accession number 2009.79. The TVAS project code is SEQ09/42.