7 Manor Lane, Old Basing, Hampshire

An Archaeological Watching Brief
For Hampshire County Council

by Sarah Coles
Thames Valley Archaeological Services Ltd

Site Code MLOB/04/34

April 2004
Summary

Site name: 7 Manor Lane, Old Basing, Hampshire

Grid reference: SU 6664 5295

Site activity: Watching Brief

Date and duration of project: 5th of April 2004

Project manager: Steve Ford

Site supervisor: Sarah Coles

Site code: MLOB 04/34

Area of site: approx. 890 sq m

Summary of results: Two discrete burials and possibly a third were located, with many disarticulated human bones.

Monuments identified: Human burials

Location and reference of archive: The archive is presently held at Thames Valley Archaeological Services, Reading and will be deposited at Hampshire Museum Services in due course

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder

Report edited/checked by: Steve Ford✓ 23.04.04
Stephen Preston✓ 21.04.04
Introduction

This report documents the results of an archaeological watching brief carried out at 7 Manor Lane, Old Basing, Hampshire RG24 7DG (SU 6664 5295) (Fig. 1). The work was commissioned by Mr David Hopkins, County Archaeological Officer at Hampshire County Council.

Planning permission had been granted for the construction of a new garage at 7 Manor Lane, Old Basing, Hampshire. However, an emergency watching brief was requested after the discovery of human remains in a soakaway dug to the south-east of the house. The field investigation was requested by Mr David Hopkins, County Archaeological Officer at Hampshire County Council. The removal of human remains was licenced by the Home Secretary under the Burial Act 1857 (Licence A5097).

The fieldwork was undertaken by Sarah Coles on 5th April 2004 and the site code is MLOB 04/34. The archive is presently held at Thames Valley Archaeological Services, Reading and will be deposited at Hampshire Museum Service in due course.

Location, topography and geology

The site is located in the historic centre of Old Basing, which is to the east of Basingstoke and 1km north of the M3. Manor Lane is bounded to the north by the railway track, to the east by Milking Pen Lane and to the south by Church Lane, and the parish church of St. Mary (Fig. 2). The parcel of land is situated at the south west end of Manor Lane on a level plot of land, at approximately 77m above Ordnance Datum. The underlying geology for the site is mapped as either Upper Chalk or Reading Beds (BGS 1978). Upper Chalk was observed on site.

Archaeological background

The site is situated in a landscape rich in archaeology dating from prehistoric times to the present day. Numerous lithic scatters dating to the Mesolithic and Neolithic periods have been found in the area and burials recorded from the Bronze Age and Iron Age. Several barrows from these periods are located to the south east of Old Basing.
Four Roman settlement sites have been excavated at Old Basing and Cowdery’s Down, and Roman pottery scatters were found in the vicinity of the site. Approximately 500m to the east of the site, the Roman road from Silchester (*Calleva Atrebatum*) runs to Chichester (*Noviomagus Regnensium*). A section of this was excavated during the laying of a pipeline (Moore 2002).

West of the site a middle Saxon settlement has been excavated (Hall and Weaver 2003), and Basingstoke itself has Saxon origins.

A Norman ringwork and bailey exists at Old Basing House and constructed inside the ringwork is a later fortified Tudor House. This was besieged during the civil war with the Royalist civil war earthworks still present. There is also a medieval Tithe Barn and a post-medieval watermill nearby.

Objectives and methodology

The purpose of the watching brief was to record, excavate and remove all human remains uncovered during the excavation of the 1m x 1m soakaway and if possible date the remains. All spoilheaps were to be monitored for finds.

Results

The area of the soakaway already exposed was 1m x 1m and in some areas dug to a maximum depth of 0.5m. To expose the entire skeleton an extra metre was dug to the west and 0.80m to the east; the total area excavated was 2.60m by 0.60–1.00m wide and 0.80m deep. The stratigraphy consisted of 0.15m of dark brown topsoil (50) onto 0.35m of mid yellow brown silty clay (51). This sealed human skeletons (52) and (53). The site had been truncated at some point prior to the construction of the present house, as there is no subsoil in the sequence.

Layer 51 was a homogenous fill, and was similar to grave earth. Although it contained a considerable amount of disarticulated human bone, it did not appear to be the fill of an individual grave cut. It also contained several pieces of medieval or later tile, burnt flint, stuck flint and one piece of Saxon pottery.

Skeleton 52 was lying supine (Fig. 3), arms and legs extended and tight to the body. The right femur had undergone a serious trauma. A skull (Skeleton 53) was removed from the eastern section, and the presence of the mandible and cervical vertebrae show it was articulated, extending beyond the area examined. This skeleton was not fully excavated as the watching brief applied only to the area immediately disturbed by the original 1m x 1m soakaway.
Finds

Human Bone by Sian Anthony

During digging of a soakaway in the back garden, the owner of the house found the original skeleton (burial 52) this was subsequently examined by the police and designated as archaeological. Rescue work to exhume the burial was undertaken under Home Office Licence A5097. This allows provision for scientific examination of the bones. In addition to the original burial a large number of disarticulated material was also recovered from the grave soil and from context 52 itself. A second articulated burial (53) was identified during the work and only those bones that were visible and likely to be disturbed by the excavation were removed. There is a possibility of a third burial although this was not confirmed (See Table 1 for MNI).

Methods

Observation of the skeleton follows guidelines set down in Buikstra and Ubelaker (1994), for sexing, ageing and recording. Further studies used include ageing information from dental wear following guidelines set down by Brothwell (1981), and from rib deterioration by Iscan and Loth (1986). Pathological descriptions follow information in Ortner and Putschar (1981).

Burial 52

The skeleton is mostly complete, but with some omissions, there is no evidence of the left hand from the carpals to the phalanges, there are only small amounts of the right hand. The foot bones are lacking phalanges despite being lifted as a block and the spoil from this wet sieved to ensure recovery of smaller fragments. The pelvic area is almost completely absent with only a fragment of the right ilium present, hindering identification of sex of the individual. This may be explained by the circumstances of the discovery of the burial: a small area directly over the pelvic area had previously been excavated without archaeological supervision. This first excavation, by spade, seems to have destroyed the majority of the pelvis. Although the initial spoilheap was moved and sorted for remnants of the skeleton, it was not recovered. The left femur was also removed and mixed with other bones prior to archaeological involvement; because of the high amount of residual bone in the area, identification of the left femur is uncertain. Bulk samples taken from the cranial area and the abdominal area recovered only smaller fragments of bone and a tooth.

Preservation of the skeleton is good overall, the burial was well preserved and not disturbed until its discovery. There are some elements that are more eroded with some cortical exfoliation and post-mortem breakage, some of which is excavation damage. Large modern cuts from a blunt spade are visible on many pieces over the pelvic area and include the right femur.
The absence of the pelvis hinders accurate assessment of the sex of the individual, there are some contrary signs on the skull, however the individual has more male characteristics although the skeleton is overall quite gracile: the individual was not large or strongly muscled. Stature estimates are from the tibiae only and so can only be used as an approximation as the bones were damaged. Using Trotter and Gleser’s equation (1970), an estimate of 1.82m is given.

An estimation of age-at-death of the skeleton can be achieved with more confidence: although all adult teeth were fully erupted, there is no wear on the third molars indicating a very young age at death, between 17 and 25 years (Brothwell 1981). This is confirmed by the post cranial skeleton, where the proximal epiphyses on the humeri are clearly fusing, this gives an estimation of age between 20 years when fusion begins and 25 years when fusion is complete in most individuals (Stewart 1979, in Schwartz 1995). Similarly the sternal ends of the clavicles were fusing and the iliac crest on the pelvis were unfused which are late fusing elements. Skeletal age is confirmed to be between c.20 and 25 years at the time of death.

The most serious pathology involves changes to the entire right femur. The original shaft of the bone is broken in two places; the break is a spiral fracture indicating a twisting force upon the leg, rotating the femur forcing the proximal shaft forward and the end of the distal shaft backwards, towards the knee. From the observed angle of break it is certain that at both points the bone would have broken through the skin (known as a compound fracture) enabling bacteria to enter directly into the wound and the internal areas of the bone. It is this infection of unknown aetiology that caused further pathological infectious changes in the femur. It is clear that there was no successful attempt to reset the bone.

It is uncertain if the distal epiphysis was fused before the injury occurred, the new bone growth and osteomyelitis may cover the fusion line. The distal epiphysis generally fuses by 20–23 years (Stewart 1979), the slight angle between the epiphysis and the main shaft, also the large depression at the posterior section of the condyles may show that fusion had perhaps started but was far from complete at the time of the accident. The distal epiphysis is not affected by the infectious changes; this often happens in juvenile infections where the epiphysis is protected from the infection by the growth plate between them. Certainly the proximal femur and trochanters seem to be fused. This corresponds with age related indictors on the rest of the skeleton.

In injuries of this kind, the bones would normally be reset and the two ends would eventually be joined together. However if bacteria enters the wound this can start a bone infection known as osteomyelitis. In unresolved and chronic osteomyelitis, the original bone will be superseded by a new bone growth that will in
effect grow around the original, often encasing it entirely; this new bone shield is known as an involucrum. This acts as the support for the leg. The original bone will then die and be slowly reabsorbed, this is a sequestrum.

In the femur it is clear that massive infection of the entire area involved both the original bone shaft and the new involucrum. If an infection involves the bone there will be a gradual build up of pus that will eventually work its way through the involucrum to the outside of the bone, and possibly outside of the body. This we see in up to ten abscesses or cloacae (drainage holes) that have pierced the involucrum to allow the drainage of pus and dead bone. The largest of these is approximately 77mm by 51mm. It is the existence of these cloacae that allow observation of the original bone shaft (sequestrum) that confirm the patterns of breakage mirrored in the outer involucrum.

A second possible pathology may be represented in the right humerus, the shaft shows a distinct angulation, the shaft rises anteriorly in a smooth arc that is not mirrored in the left. There is no visible evidence of injury, only an X-ray may confirm the existence of a perhaps well healed small fracture that misaligned the shaft. This is not related to the injury to the femur, having occurred much earlier.

Skeleton 53
During the course of excavation a second articulated burial was uncovered in the baulk of the grave. Only the skull and cervical vertebrae were recovered. The bones are in excellent preservation with little modern breakage. The individual was likely to be female from indicators on the skull and mandible. Tooth wear gives an age of between 25–35 years-at-death (Brothwell 1981). Skull sutures are partially fused also indicating an age of a middle-aged adult. No pathologies or non-metric traits were observed on this individual.

Disarticulated human bone
A total of 89 pieces of bone were identified from context 51 or are of uncertain provenance, however this includes a separate skull that was found at the foot area of burial 52. Only the calvarium was present with few internal bones and no facial bones or teeth. However the skull is likely to be female from several indicators; unfortunately only the skull sutures can give an indication of age-at-death, the sutures are closed but still visible at most points indicating a middle-aged adult. Information from the excavator indicates that this might be the disturbed remnants of a further burial lying away from the feet of burial 52.

Five bones whose precise context is uncertain were removed by the police in their initial investigation, one of these is the left femur from burial 52. Some 83 pieces were recovered from the grave fill (51), the minimum number of individuals from this context (from the skulls) alone is of one female and two males. If the skull found
at the foot of the burial is indeed a separate grave then the MNI increases to two females, two males. This is closely supported by MNI figures from post-cranial elements of 3 individuals (femora and humeri).

Table 1. Summary of individuals.

<table>
<thead>
<tr>
<th>Context</th>
<th>Sex</th>
<th>Age-at-death</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burial 52</td>
<td>Male</td>
<td>20–25</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>2 female, 2 male</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>Female</td>
<td>25–35</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Conclusions

The original extent of the excavation was solely to exhume burial 52. However other contexts where human bone was recovered from include the grave fill (51) and a second burial (53). There is also the possibility of a third burial from the skull found lying at the foot area of burial 52. This is a considerable number of burials in close vicinity and accords well with amounts found in closely packed burial grounds. The minimum number of individuals associated with the other contexts shows that burial 52 was not merely cut through an earlier grave and placed on top but lies in an area of high density of graves. The close proximity of these graves to the churchyard indicates either a secondary graveyard area or extension of the original area that has since been deconsecrated.

The pathological femur from burial 52 is an extreme example of the dangers of fractures in the pre-antibiotic age, however the individual clearly survived long enough for chronic changes that are visible to occur. High mortality arises from compound fractures with infection (Ortner and Putschar 1981), and it may have been the chronic infection that caused septicemia and eventual death although this is far from conclusive.

Rarely do these infections affect the rest of the skeleton, although the severity of the response although longer term problems may arise if the person had survived which could have included decreased mobility and joint problems with the redistribution of weight on joints (Roberts and Manchester 1995). There are no pathological changes in the knee joint, tibia or fibula, the pelvis and acetabular area are sadly missing. It is unusual to recover injuries of this severity and from this element, fractures to the femur are far less common in the medieval period than to bones of the lower leg or the arm (ibid).

Animal Bone by Sian Anthony

A small amount (18 pieces) of animal bone was recovered during excavation from the burial and surrounding area. All are in excellent state of preservation. Most are ovicaprid, with one pig tooth, there is one possible cut into the shaft of an ovicaprid femur. All are likely to be residual from food waste from local domestic sources.
Burnt Flint by Sarah Coles

A single piece of burnt flint was recovered from the grave fill (51) and weighed 18g.

Struck Flint by Steve Ford

A single prehistoric struck flake was found.

Tile by Sarah Coles

Seventeen pieces of tile were retrieved during the watching brief. One piece was from the existing spoilheap, 13 were from the topsoil (50) and three were from the grave earth (51). Their combined total weight was 406g. They are all probably of medieval or later date.

Metalwork by Sarah Coles

One large modern iron nail (22g) was found in topsoil (50).

Pottery by Steve Ford

Three pieces of pottery were retrieved from the watching brief excavation. A sherd of chaff tempered Saxon pottery weighing 4g and a piece of brown glaze 19th century pottery weighing 6g were found in the topsoil. A single small sand-tempered fragment (2g) was recovered from the grave fill (51) and is of Roman or medieval date.

Shell by Sarah Coles

One oyster shell was recovered from topsoil (50) and weighed 34g.

Conclusion

The site is located within close proximity to the church of St Mary’s, although the main graveyard is located (as is usual) to the south of the church. It is possible that in the past there was an alternative graveyard situated in the area of 7 Manor Lane, perhaps to permit burials in unconsecrated ground. The potential number of three graves, along with other disarticulated remains, in an excavated area of only 2.6m square shows a high density of burial.
It is also unknown if this new area discovered was ever consecrated. If it reflects a burial ground of low status, on unconsecrated ground it still lies under the church’s gaze.

The original burial (52) suggested that the body was buried in a shroud; the absence of coffin fixtures and fittings may suggest a low status burial, however the majority of medieval burials were buried in this manner. No dating can be applied with any confidence to these remains.

References
Buikstra, J E and Ubelaker, D H, 1994, Standards for data collection from human skeletal remains Arkansas
Archaeological Survey Research Series, 44, Fayetteville, Ark.
Moore, H, 2002, Underground Electricity Cable Pipeline, Basingstoke, Hampshire, Thames Valley
Archaeological Services report 01/91, Reading
Roberts, C and Manchester, K, 1995, The Archaeology of Disease, 2nd Edn, Stroud
Schwartz, J H, 1995 Skeleton Keys. An introduction to human skeletal morphology, development and analysis, Oxford
Stewart, T D, 1979, Essentials of Forensic Anthropology: especially as developed in the United States. Springfield, Illinois
7 Manor Lane, Old Basing, Hampshire, 2004
Archaeological Watching Brief

Figure 1. Location of site within Old Basing and Hampshire.

Reproduced from Ordnance Survey Pathfinder 1204 SU65/75 at 1:12500 Ordnance Survey Licence 100025880
Figure 2. Location of site within Old Basing.

Reproduced from Ordnance Survey, Hampshire County Council 2002
Figure 3. Detailed plan of excavated area.

Soakaway to be excavated to 1m depth

Burial 52

Disturbed by Hampshire Constabulary

Drainage to be excavated to 0.5m

Burial 53

Residual bone

The Granaries