Early to Middle Iron Age occupation north of Old Guildford Road, Broadbridge Heath, Horsham, West Sussex

by Andy Taylor

Summary

Geophysical survey and evaluation trenching over a 9ha site revealed post-medieval field boundaries and just one archaeological feature, which was subsequently the focus of a small area excavation. This was a ring gully, the remnants of a roundhouse, whose dating based on a very small pottery collection would have been tentatively Late Iron Age, but which radiocarbon dating shows is clearly considerably earlier. A second radiocarbon date in the late Bronze Age must derive from older material, not associated with the occupation, but nonetheless must indicate activity of some sort in that period in the vicinity. The results show, once more, that the Weald is not quite such an archaeological blank area as it has sometimes been portrayed.

Introduction

Thames Valley Archaeological Services carried out a small archaeological excavation between 5th and 9th May 2016 on land north of Old Guildford Road, Broadbridge Heath, Horsham, West Sussex (TQ 1527 3167).

Planning permission (DC/13/2408) had been gained on appeal (APP/Z3825/A/14/2224668) from Horsham District Council to construct new housing and a care home on the site, along with associated access and car parking. As a consequence of the possibility of archaeological deposits on the site, which could be damaged or destroyed by the proposed development, the consent was subject to a condition (6) relating to archaeology.

This is in accordance with the Department for Communities and Local Government’s National Planning Policy Framework (NPPF 2012) and the District Council’s policies on archaeology. The fieldwork was undertaken by the author and the site code is BHH 12/173. The archive is presently held at Thames Valley Archaeological Services, Reading and will be deposited with Horsham Museum in due course.

Location, topography and geology

Broadbridge Heath lies just west of Horsham, on the edge of the High Weald in northern West Sussex (Fig. 2.1). The overall development site occupied c. 9ha on the northern fringe of the build up area, west of the A24. Within this, the excavation area measured c. 900 sq m (Fig. 2.2) on part of an arable field that is bounded by housing to the south and further farmland and woodland in all other directions. The field slopes from down from south-east to north-west towards the steep narrow valley of a stream that feeds the river Arun, and the excavation area lies at a height of between c. 40m and 41m above Ordnance Datum. The underlying geology is mapped as Wealden Clay (Horsham Stone Formation) (BGS 1972), which was observed across the stripped area.
Archaeological background

The archaeological potential of the site had been initially highlighted in a desk-based assessment (Wallis 2012). In summary, the site lies on the Weald Clay, a geological outcrop not noted for its wealth of archaeological deposits, at least until medieval times (Brandon 1978). The Roman road Stane Street passes some 4km to the west. Recent fieldwork in other parts of the Weald is beginning to show that the area is not quite so archaeologically barren as had previously been thought (e.g., Wallis 2016). The desk-based assessment concluded that although there had only been a few stray finds in the surrounding area in the past, this might reflect the paucity of archaeological fieldwork in the region. This theory was confirmed by geophysical survey (Constable and Dawson 2015) and subsequent trial-trench evaluation (Wallis 2015a), which revealed a number of linear features, the majority of which were related to field boundaries shown on historic maps from the 1840s onwards, and/or contained post-medieval finds. However, a possible late Iron Age ring gully (roundhouse) was recorded in the centre of the site along with a number of other features which may be associated. As a result, this area was selected for full excavation.

The Excavation (Figs 2.2 and 2.3)

The stripped area (Pl. 2.1) measured c.900 sq m from which topsoil and subsoil were removed by a 360° type machine fitted with a toothless grading bucket under constant archaeological supervision. This revealed the majority of a ring gully, as identified in the evaluation, as well as five pits and two postholes. These are tentatively dated as contemporary with each other, although the paucity of finds makes it difficult to be certain. All features were initially sectioned (as shown in plan) then fully excavated.

Roundhouse (Pls 2.2–2.3)
The roundhouse consisted of a ring gully in four separate parts forming c.75% of a circle, with an internal diameter of 11m, open to the north-west. Including the two slots dug in the evaluation, twelve slots were dug around its length (1 and 114–17 in the north, 3 and 105–8 in the south, with 102 and 103 being short intermittent stretches in the east), measuring between 0.27–0.81m wide and 0.06–0.17m deep (Fig. 2.4). These produced 19 sherds of pottery from both the evaluation and excavation, a piece of fired clay and a flint flake.

Within the ring gully were four discrete features (2, 109, 110 and 111). It was unclear if these represented structural features, though this is assumed to be the case with posthole 100 and pit 101 which lie between sections of ring gully.

Posthole 2, from the evaluation, measured 0.43m wide and 0.10m deep. Its light yellow brown sandy clay fill (53) produced nine small sherds of late Iron Age pottery. Postholes 100 and 110 were respectively 0.36m and
0.20m in diameter and 0.07–0.08m deep. Both were filled with mid yellow brown sandy clay that did not produce any dating evidence.

Pits 101 varied from 0.32m to 0.78m wide and 0.12–0.22m deep. All had single fills of mid yellow brown sandy clay and none produce any dating evidence.

Discrete Features
Just to the south-east of the ring gully, pit 112 was cut though the uppermost fill of pit 113 (Fig. 2.4; Pl. 2.4), measured 0.96m wide and 0.19m deep, and had two fills (162 and 163). Upper fill 162 was an orange sandy clay and 163 was a light grey brown sandy clay. Neither of these contained any finds. Pit 113 was 0.56m deep and had three fills (164–166). 164 was a light grey yellow sandy clay, 165 was a yellow black sandy silt and 166 was light brown grey silty sand. None of these produced any dating evidence.

Finds

Pottery by Paul Blinkhorn

The excavation pottery assemblage comprised 4 sherds with a total weight of 11g. It is all prehistoric. To this can be added the 15 very abraded sherds, totalling just 26g, from the evaluation. The following fabric types were noted in the excavation material:

F1: Flint. Fine sandy matrix, moderate angular calcined flint up to 2mm. 2 sherds, 6g.

F2: Shelly. Fine sandy matrix, moderate to dense shell up to 4mm, most represented by voids left from the leaching of the calcareous inclusions. 2 sherds, 5g.

The sherds from the evaluation, by contrast, were all in the following fabric:

F3: Grog. Slightly sandy grog-tempered reduced ware with some calcareous inclusions. 15 sherds, 26g. Sherds from gully 3 (54) come from a shouldered jar; while one of the very badly abraded sherds from 2 (53) is a simple upright rim.

The pottery occurrence by number and weight of sherds per context by fabric type is shown in Table 2.1. The fabrics are fairly typical of the prehistoric pottery of the region. All the sherds are plain bodysherds, and quite small and abraded. Calcined flint and shelly fabrics occur as early as the Neolithic in Sussex (Seager Thomas 2008, 47), but were relatively scarce in the early Bronze Age (Seager Thomas 2008, 25), becoming common again in the Late Bronze Age (Seager Thomas 2008, 27). They then continued in use into the late Iron Age, and sherds are very difficult to date precisely when form or decorative information is not present (Seager Thomas 2008, 47). Given the small and somewhat abraded nature of the material from this site, an exact date cannot be ascribed to the pottery itself other than to place it within the prehistoric period. The understandably tentative late Iron Age date assigned to the evaluation material is clearly revised by the radiocarbon dates here.
Table 2.1: Pottery Fabrics

<table>
<thead>
<tr>
<th>Cut</th>
<th>Deposit</th>
<th>No Wt (g)</th>
<th>No Wt (g)</th>
<th>No Wt (g)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>1</td>
<td>2</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>5</td>
<td>8</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>9</td>
<td>16</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>106</td>
<td>156</td>
<td>1</td>
<td>5</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>114</td>
<td>167</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>116</td>
<td>169</td>
<td>1</td>
<td>4</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>117</td>
<td>170</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Prehistoric</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Struck Flint by Steve Ford

A single broken struck flint was recovered from gully slot 105 (155). It is not closely datable and could be of later Neolithic or Bronze Age date, though the Iron Age context of its discovery could also indicate it was made and used then.

Fired Clay by Andy Taylor

One piece of fired clay was recovered from ring gully terminus 117. It has no distinguishing features and so its purpose is unclear but it may be a piece of daub or loomweight.

Radiocarbon dating

Two samples (both of oak charcoal) were submitted to the Chrono radiocarbon dating laboratory at the Queen’s University of Belfast. The results were calibrated using Calib rev 7.0 with data from INTCAL 13 (Reimer et al. 2013) and are detailed in Table 2.2. All results are quoted at 2-sigma (95.4% probability).

Table 2.2 Radiocarbon dates

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Feature</th>
<th>Radiocarbon Age (BP)</th>
<th>Calibrated date BC</th>
<th>Area under curve at 2-sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBA32240</td>
<td>108 (158)</td>
<td>2350 ± 29</td>
<td>509-379</td>
<td>100%</td>
</tr>
<tr>
<td>UBA32241</td>
<td>115 (168)</td>
<td>2957 ± 29</td>
<td>1260-1073</td>
<td>98.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1065-1057</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Environmental remains

Bulk soil samples were taken for environmental evidence from twelve features and processed using standard water flotation techniques. No charred seeds were present in any of the samples, but nine samples contained charcoal. All the identifiable charcoal was of oak (*Quercus*).

Conclusion

The excavation revealed a modest amount of archaeological deposits in the stripped area. These contained very few finds, but all appear to be closely associated. The chief feature is an intermittent curving gully forming approximately three-quarters of a circle, presumed to be a roundhouse gully. The discontinuous nature around the eastern side might reflect erosion and differential survival but the presence of at least one post hole in this
part of the circuit suggests it may be intended. The larger gap in the north-west may also be ‘real’ rather than a reflection of preservation.

The pottery from all features combined could not be assigned to a date any closer than ‘prehistoric’, although the tendency would have been to assign them to the later Iron Age, so the provision of two radiocarbon dates supplies the site’s chronology. Unfortunately, the two dates are seven centuries apart. This need not involve any contradiction, however, as the earlier date must simply be derived from charcoal belonging to an earlier phase of activity (not represented by cut features) and the roundhouse was in use in the 5th or 4th century BC. This early to middle Iron Age date is especially significant as it appears to the first evidence of Iron Age settlement from this area. The exclusively oak charcoal might indicate the structural timber employed, or it may reflect conscious selection of oak for use as firewood; at the very least it indicates the availability a local supply of oak, though that need not necessarily have been the only tree cover in the area. The paucity of finds means that the economy of the site cannot be reconstructed, but it is possible in this case that some of what is absent might be significant: there is no trace of any indication of iron-working, which is the dominant activity in the Weald in later periods.

The Bronze Age radiocarbon date, even though no features appear to belong to this period here, is also significant, as it must derive from some activity in this period (perhaps no more than tree clearance?). Again, there is no comparably dated evidence in the vicinity, but a Middle Bronze Age date has recently been obtained from a site at Burgess Hill to the south-east (Wallis 2016). There, the remains essentially consisted of a middle–late Bronze Age roundhouse, built over earlier occupation, radiocarbon dated to the middle Bronze Age.

Both sites add to the growing impression that the Weald’s reputation as an archaeological blank area for many periods may be unwarranted. It is possible, though not demonstrated here specifically, that the site represents short-lived expansion of settlement onto ‘marginal’ agricultural areas. It could equally represent only a seasonal occupation. Further evidence would be required to begin to explore the range of possibilities.

Acknowledgements

The work was commissioned by Mr Chris Jasper, of Bellway Homes-South London, Bellway House, London Road North, Merstham, Surrey, RH1 3YU. The field investigation was carried out to a specification approved by Mr Martin Brown, Principal Archaeologist with WYG Environment Planning Transport Ltd, advisers to the District on matters relating to archaeology. Luke Barber identified the finds from the evaluation.