Andover Business Park (Andover Airfield),
Red Post Lane, Andover, Hampshire

An Archaeological Fieldwalking Survey
for Lady Clark

by Steve Ford
Thames Valley Archaeological Services Ltd

Site Code ABP01/118

April 2002
Summary

Site name: Andover Business Park (Andover Airfield), Red Post Lane, Andover, Hampshire

Grid reference: SU 330 460

Site activity: Fieldwalking

Date and duration of project: 10th–18th April 2002

Project manager: Steve Ford

Site supervisor: Steve Ford

Site code: ABP01/118

Area of site: c. 78 ha

Summary of results: An extensive spread of struck flint of late Neolithic and Bronze Age date was found with higher density areas probably indicative of intensive or lengthy occupation. Late Bronze Age, prehistoric, Roman, medieval and post-medieval pottery was recovered. A single cluster of burnt flint was observed.

Monuments identified: None

Location and reference of archive: The archive is held at Thames Valley Archaeological Services, 47-49 De Beauvoir Road, Reading, RG1 5NR and will be deposited with Hampshire County Museum Service in due course.

This report may be copied for bona fide research or planning purposes without the explicit permission of the copyright holder
Introduction

This fieldwalking study, commissioned by Mr. Chris Enderby of Enderby Associates, The Smithy, West Kington, Chippenham, Wiltshire, SN14 7JE on behalf of Lady Clark, c/o Dreweatt Neate, 16/18 Market Place, Newbury, Berkshire, RG14 5AZ, is part of an assessment of the archaeological potential of a parcel of land on the western margins of Andover, Hampshire (SU 330 460) (Fig. 1). The report constitutes the second, non-invasive stage of a process to determine the presence/absence, extent, character, quality and date of any archaeological remains that may be affected by development within the area.

The site

The whole proposal site comprises a roughly triangular parcel of land (c. 85 hectares) on the southern side of the A303 with Red Post Lane to the west and MOD property and Monxton Road to the south. Approximately 78ha is under arable cultivation and it is this area which was subject to fieldwalking. The site is located on relatively level but undulating ground bisected by two dry valleys aligned north–south, which converge at the southern end (Fig. 2). The site lies at an average height of c. 81m above Ordnance Datum. The underlying geology is mapped as Upper Chalk (BGS 1975).

Planning background and development proposals

Part of the site has been allocated for commercial and industrial use in the adopted Local Plan (TVBC 1996). A desktop study has shown that there is a strong possibility of the presence of significant archaeological deposits in the development area (Ford 2002). In summary, aerial photography has revealed a cemetery of at least 5 ring ditches, one of which was an upstanding barrow of early Bronze Age date prior to the creation of the airfield runway. Other ring ditches and linear features are also present on the site.
Objectives and methodology

The fieldwalking took place along north–south lines spaced at 10m intervals and based on the National Grid. Material was collected from units of 10m intervals along these lines with an average search width of 1m. This approximates to a 10% sample of the surface area of the site. The methodology is comparable with that practised in other regions of central southern England (Richards 1990; Ford 1987a, appendix 1) though the sample fraction here is higher. All pre-19th century artefacts (primarily struck flint and pottery) were to be collected and retained. Dense scatters of brick/tile or burnt flint were to be recorded in the field but only a sample of material collected for dating purposes.

A record was made of conditions which may have influenced recovery rates, such as stoniness of ground, vegetation cover, bright sunlight and which individual walked which line. The topography was also recorded to assist in interpretation of the finds.

Results

A total area of 78ha was fieldwalked by 3 individuals.

Collection conditions

All of the fieldwalked area had been planted with cereal which was of moderate growth. Apart from small areas of double planting, c. 80% of the ground surface was observable. The site was overcast for the vast majority of the time of the survey. Stone, comprising chalk and flint nodule fragments, was widespread with dense areas especially to the west and relatively stone-free areas present only towards the floor of the dry valleys.

Finds

Struck flint

In all, 2013 struck flints were recovered, as detailed in Table 1. The distribution is shown in Figures 3 and 4. A further 19 pieces are thought to be of modern (plough-struck) origin. The vast majority of the struck flint was patinated (corticated) a blueish white colour with some pieces fully white and in an advanced stage of cortication. A small number are unpatinated and relatively fresh, but are thought to be of *bona fide* prehistoric origin. Most pieces were edge damaged (plough retouched) to a greater or lesser extent, and it is likely that some of these pieces were
originally deliberately retouched in prehistoric times. Conditions which affect the rate of patination of struck flints are complex and locally variable. It is not clear, therefore, how many of the patinated pieces recovered were plough-struck in relatively recent times. The collection is considered to include a significant proportion of procurement debris, and this material can be difficult to differentiate from modern plough-struck material. Perhaps, therefore, a small proportion (1%?) of the collection recovered may be misidentified and not be of prehistoric date.

Table 1: Struck flint

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blades/narrow flakes</td>
<td>60</td>
</tr>
<tr>
<td>Flakes</td>
<td>1838</td>
</tr>
<tr>
<td>Cores</td>
<td>38</td>
</tr>
<tr>
<td>Bashed lumps/core fragments</td>
<td>8</td>
</tr>
<tr>
<td>Spalls</td>
<td>33</td>
</tr>
<tr>
<td>Scrapers</td>
<td>29</td>
</tr>
<tr>
<td>Hollow scraper</td>
<td>1</td>
</tr>
<tr>
<td>Thumbnail scraper</td>
<td>1</td>
</tr>
<tr>
<td>Notched flake</td>
<td>1</td>
</tr>
<tr>
<td>Flake from axe</td>
<td>1</td>
</tr>
<tr>
<td>Hammerstone</td>
<td>1</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>2</td>
</tr>
</tbody>
</table>

The sub-division of blades/narrow flakes from broad flakes was not done metrically but assigned by eye.

Chronology

As a whole, the flint collection is homogenous and is entirely typical of what would be expected for material within the broad time span from the later Neolithic to early Iron Age (Ford 1987b). Very few pieces are chronologically distinctive. There are a number of pieces, in particular the blades/narrow flakes, which might be representative of a low level of earlier (Mesolithic/earlier Neolithic) activity but could easily be chance products of later flint knapping.

The differentiation of Middle Bronze Age or Late Bronze Age/Early Iron Age assemblages from those of later Neolithic/Early Bronze Age date is, unfortunately, based on negative characteristics (Ford et al. 1984) and dating can be complicated by the homogenous nature of quarry assemblages derived from any period (Ford 1987b). Both these factors are likely to be in effect here. The location of the site in an area where prolific flint is present naturally suggests that both procurement of raw materials and ad hoc use were likely to be widespread throughout prehistory. In fact the high proportion of cortical and ‘waste’ flints points in this direction (Ford 1987b). Nevertheless with a
collection of this size, even negative aspects may be statistically significant, and the content of the retouched
cOMPONENT might have more relevance. The retouched component was, as always, dominated by scrapers, a
ubiquitous tool of very limited chronological significance. However, very few other recognizable tool types were
recovered. If this material were from a securely stratified deposit it would suggest a later Bronze Age date.

Interpretation of the struck flint distribution

Before the recorded distribution of the lithic material can be interpreted in terms of its archaeological significance
and the impact of the proposed development, an assessment of the nature of the use and discard of struck flint and
the activity represented by flint scatters is required. In contrast to pottery, which is predominantly used only on
occupation sites, struck flint is used on, adjacent to, and away from occupied areas. Procurement of raw materials
itself produces further material not necessarily located close to occupied areas, and as for pottery, used flint can end
up in middens which are used to manure arable fields. Durable flint, much of which is not chronologically
distinctive, was widely used and discarded during much of prehistory, as settlement patterns and subsistence
strategies changed. As such, it should not be surprising that struck flint can be widely distributed across the
landscape without marked clustering or with widespread clusters of higher density material representing repeated use
of the same location over many generations. (Foley 1981). Coupled to this are taphonomic processes such as
ploughing and colluviation which can lead to the wide dispersal of originally dense and discrete scatters (Yorston et
al. 1990). There is a further body of evidence to indicate that much early prehistoric occupation is now represented
only by scatters of struck flint within the topsoil (Healy 1987). Large quantities of struck flint need not imply the
presence of significant numbers of sub-surface features.

Fieldwalking at Thruxton Airport, further to the west of Andover, produced a similarly high density of struck
flint (Hall 1994). A subsequent watching brief during topsoil stripping of a limited area of the site there did reveal
subsoil archaeological deposits, including late Bronze Age pits and undated, but probably also Neolithic or Bronze
Age, ditches (WA 1997).

The average density of finds for the whole site here (extrapolated to assume 100% coverage) is a modest 258
flints per hectare with peaks of 500–750/ha. Whilst these figures are not inconsiderable they are of a lower order
than the densities recorded on the Stonehenge Environments Project (Richards 1990), where densities exceeding 5000/ha
are not uncommon, or even the lower figures recorded at Thruxton Airport with an average of 832/ha and peaks of 1720 and 1480/ha (Hall 1994).

It seems fairly clear from the flint distribution patterns here that this area was widely used either for occupation, farming, procurement of raw materials or more likely all three. There are several areas of higher density located on the higher areas to the west of the site, and to the west and south-west of the ring ditch cemetery (Fig. 3). These areas each occupy several hectares and probably reflect preferred settlement locations occupied repeatedly or continuously over a great length of time.

Pottery identified by Jane Timby

The fieldwalking resulted in the recovery of 163 sherds of pottery and eight fragments of ceramic building material (CBM) as shown on Figure 5. The pottery includes material of prehistoric, Roman, medieval and post-medieval currency, with the greatest emphasis being on material of Roman and post-medieval dates. Most of the sherds were quite small and worn, commensurate with material from a ploughsoil environment. For the purposes of the assessment the material from each collection point was scanned to assess its likely date and recorded by sherd count.

Prehistoric

Eleven sherds of probable Iron Age date were recorded, mainly bodysherds with a calcined flint temper. One rim sherd with finger-tip decoration could potentially be of later Bronze Age or early Iron Age date.

Roman

One hundred sherds, 61% of the total, date to the Roman period. Most of the sherds are grey sandy wares, not very chronologically diagnostic although many could be recognized as products of the Alice Holt industry. Amongst the more recognizable types are some late grog-tempered wares, one sherd of Central Gaulish samian, five sherds of New Forest colour-coated ware and one sherd of Oxfordshire colour-coated ware, all of which would point to a phase of use dating to the later Roman period (later 3rd or 4th centuries).

Medieval

Eleven sherds were identified as probably medieval, although some of these sherds were so small it was difficult to be certain.

Post-medieval

In total 39 sherds date to the post-medieval period. These include glazed red earthenwares, slip decorated ware, English and German stoneware and basalt ware.
Interpretation of the pottery distribution

The distribution of the pottery is shown on Figure 5. Prehistoric pottery does not survive well in ploughed environments and is often brought to the surface by plough damage to subsoil deposits. However, in this instance there are few prehistoric sherds recovered and these are well distributed across the site. It is not clear, therefore, if these do reflect the presence of subsoil deposits, or are vestigial traces of a much wider distribution of material derived from manuring or, like some of the flintwork, from middens on occupation deposits that were never deeply buried.

Roman pottery constitutes the bulk of the pottery recovered from the site. It does cluster in certain parts of the site. However, the material recovered is small and abraded and despite the intensity of the fieldwalking, the clustering comprises a low density of material spread over several hectares. These characteristics bear closest similarities to material derived from manuring scatters, though one or more Roman occupation sites must be present nearby if not actually on the site.

For the medieval and post-medieval material it is clear from the few finds recovered, the dispersed distribution and abraded nature of the sherds, that the collection is best interpreted as having being derived from manuring scatters.

Other Finds

A cluster of burnt flint was observed at SU32410 45930 with a diameter of c. 5–10m (Fig. 5).

Conclusion

The fieldwalking has resulted in the recovery of a substantial quantity of artefacts from the site area and clearly indicates widespread use of the landscape at various times in the past. In prehistoric times, the density and clustering of struck flint suggest widespread evidence for occupation, probably in the Bronze Age and probably contemporary with construction and use of the ring ditch cemetery and other ring ditches on the site.

Pottery finds of prehistoric date, albeit few in number, may be partly contemporary with this flintwork, but it is not clear if these are derived from plough-damaged subsoil deposits. Roman pottery forms the bulk of the ceramic material present but, again, it is not clear if this is derived from plough-damaged deposits on occupation sites or
from manuring of arable land. Medieval and post-medieval pottery is best considered as being a result of manuring of arable land during these times.

English Heritage have recently published guidelines on assessing the significance of lithic scatters in management terms (EH 2000). Six criteria were presented to identify the most important scatters, which might be worthy of preservation as Scheduled Monuments in their own right. In summary, it is concluded that scheduling would be ‘unlikely in most cases’, but a lithic scatter will have particular importance if it meets three of the following criteria:

1 it has clearly defined boundaries making it recognizable as a discrete site
2 the high quality of the artefacts suggests they derive from subsurface features whose disturbance has been recent
3 additional evidence points to associated buried structural remains or other artefacts
4 there is evidence for part of the site’s being undisturbed
5 it can be dated or interpreted with confidence
6 there is evidence of diversity (of dates or activities)

The scatter located here does not appear to meet these criteria. In particular, the distribution of the struck flint across the proposal site is widespread. Although there is evidence of some clustering against a general background pattern, the densest areas of the flint scatter cannot be described as ‘discrete’, and are not in any case as dense as other scatters in the region. The flintwork recovered is invariably edge-damaged to a greater or lesser extent and the vast majority is patinated and even corticated on occasions. The material would have little potential for use-wear studies. There is no evidence for these flints having been recently derived from buried deposits or for any realistic prospect of parts of the scatter not having been disturbed by ploughing. The composition of the scatter is extremely homogenous with few retouched pieces despite a large sample size. Finally, although the broad chronology of the scatter has been ascribed to the later Neolithic or more probably, Bronze Age, it belongs to a period of significant change which can be subdivided more precisely using ceramic chronologies.

For lithic scatters not meeting the criteria for national importance, i.e., the majority of cases, recording is regarded as the most appropriate response (EH 2000, 7).

References
EH, 2000, Managing lithic scatters, archaeological guidance for planning authorities and developers, English Heritage, London

Hall, M, 1994, Thruxton Airport, near Andover, Hampshire, an archaeological evaluation, Thames Valley Archaeological Services report 94/23, Reading

TVBC, 1996, Test Valley Borough Council Local Plan, August 1996, Andover

WA, 1997, Land at Thruxton Aerodrome, Andover, Hampshire, Wessex Archaeology, Salisbury

Andover Airfield, Andover, Hampshire, 2002

Figure 1. Location of site within west Andover and Hampshire.

Reproduced from Ordnance Survey Pathfinder 1222 SU24/34 1:25000
Ordnance Survey Licence A1.82324A0001
Figure 2. Topography of the site and on-site evidence.
Figure 3. Density of flints per hectare.
Figure 4. Distribution of flint types.
Figure 5. Distribution of pottery located during fieldwalking.